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At high area fractions, monolayers of colloidal dimer particles form a degenerate crystal (DC) structure
in which the particle lobes occupy triangular lattice sites while the particles are oriented randomly along
any of the three lattice directions. We report that dislocation glide in DCs is blocked by certain particle
orientations. The mean number of lattice constants between such obstacles is �Zexp � 4:6� 0:2 in ex-
perimentally observed DC grains and �Zsim � 6:18� 0:01 in simulated monocrystalline DCs. Dislocation
propagation beyond these obstacles is observed to proceed through dislocation reactions. We estimate that
the energetic cost of dislocation pair separation via such reactions in an otherwise defect free DC grows
linearly with final separation, hinting that the material properties of DCs may be dramatically different
from those of 2-D crystals of spheres.
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The microscopic motion of dislocations plays a crucial
role in melting [1,2] and governs numerous macroscopic
phenomena observed in crystalline materials, including
plastic flow, yield, and work hardening [3–6]. Studies of
dislocations in colloidal crystals enable direct visualization
of such processes [7–12], providing an illustrative model
for addressing fundamental questions in statistical physics
and materials science. Thus far, such studies have focused
on crystals of spherical particles, whose defect transport
mechanisms are well described by existing models [3–5].
Advances in colloidal particle synthesis techniques have
enabled the production of a variety of anisotropic yet
monodisperse particles [13–19]. Dimer particles are a
simple, fundamental extension of spherical particles and
can be found in systems ranging from granular piles
[20,21] to paired adatoms in thin film epitaxy [22].
Furthermore, dimers are exceptional since although they
are nonspherical, their constituent lobes can nevertheless
occupy the lattice sites of crystal structures formed by hard
spheres. The study of ordered phases formed by such
particles therefore constitutes a natural expansion of the
existing body of knowledge on crystals of spheres.

Here, we directly examine the mechanisms for disloca-
tion nucleation and propagation in a crystalline phase
formed by dense monolayers of colloidal dimer particles.
This crystalline phase, known as a Degenerate Crystal
(DC), was first identified in simulations of dimer particles
[23,24], and is defined by the following two characteristic
features. First, the individual dimer particle lobes form a
triangular lattice, and second, the particle orientations are
disordered, uniformly populating the three crystalline di-
rections of the underlying lattice. We find that dislocation
glide in DCs of colloidal dimers is severely limited by
geometric constraints formed by certain particle orienta-
tions. This restricted dislocation motion suggests that the
material properties of DCs may be dramatically different
from those of crystals of spherical particles.

We observe dislocation motion in DCs comprised of
hollow, hard dimer particles with spherical lobes of diame-
ter 1:36 �m and lobe separation 1:46 �m. Using sol-gel
chemistry, the rhodamine-functionalized silica particles
are templated from dimer-shaped hematite cores and are
sterically stabilized and suspended in an aqueous solution,
yielding nearly hard-core interactions. A detailed descrip-
tion of the particle synthesis is provided in the supplemen-
tary materials [31]. The synthesis procedure produces 95%
pure dimer particles with particle polydispersity<5%. The
suspension is pipetted into a sealed wedge-shaped cell, and
particle area fraction is controlled by tilting the cell so that
particles sediment into the viewing region, which accom-
modates a monolayer of particles. Before imaging with an
inverted microscope, the cell is laid flat, allowing local
equilibration until the area fraction is constant over the
entire region of interest. The insertion procedure for filling
a wedge cell creates small air bubbles; when these bubbles
move near crystalline regions, they induce defect forma-
tion and transport.

The observed mechanisms for dislocation nucleation
and glide are summarized in Fig. 1. Nucleation occurs
when a single dimer particle (highlighted in the image
with a thick black dumbbell), rotates, creating a pair of
dislocations [Figs. 1(a) and 1(b)]. Glide is observed to
occur either through a swinging move in which one particle
lobe remains fixed while the other swings into a new
crystalline position, or via a sliding move in which a
particle translates along its axis. Swinging shifts the dis-
location by one crystalline row, while sliding shifts it by
two rows. A sequence of a sliding move followed by a
swinging move is shown in Figs. 1(c) and 1(d), where the
sliding and swinging dimer particles have again been high-
lighted by thick black dumbbells.

These observed mechanisms resemble similar mecha-
nisms in crystals of spheres. In such crystals, a pair of
dislocations is created through the displacement of two
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adjacent particles [Fig. 2(a)]. Each dislocation consists of
one fivefold and one sevenfold coordinated particle and is
characterized by a Burgers vector. The dislocations glide
apart through a succession of moves in which each seven-
fold particle shifts its relative lattice position by moving in
the direction of the Burgers vector. This process has the net
effect of producing slip in the region between the disloca-
tions, shifting the left side of the crystal upward and the
right side downward in Figs. 2(b) and 2(c).

Guided by our experimental observations, we note that
dislocation motion in DCs is restricted by the constraints of
the local particle configuration. A schematic of a DC where
dimers are represented by black dumbbells is shown in
Fig. 2(d). Nucleation occurs when a single dimer rotates as
shown by the arrows on the gray particle. To allow for
glide, the dimer lobes marked with arrows must shift in a
manner similar to that shown for spheres. The critical
difference is that while spheres are free to move indepen-
dently, these lobes are constrained to move in collaboration
with their partner lobes. The three types of particle orien-
tations relative to the glide direction are illustrated by the
green, blue, and red particles in Fig. 2(d). Green particles
can shift both lobes in the desired direction by sliding,
while blue particles can shift one lobe by swinging.

Particles like these therefore permit dislocation glide, in
concurrence with the experimental observations of swing-
ing and sliding moves [Figs. 1(c) and 1(d)]. The red
particles, however, would need to be broken by the relative
shifting of the crystal rows during the slip caused by glide
[Figs. 2(d) and 2(e)]. Since the particles in our suspensions
do not break, the orientation of such particles blocks the
motion of dislocations. Consequently, only sequences of
consecutive swinging and sliding particles allow continu-
ous glide. Since their glide-permitting motion is reminis-
cent of rearrangements in random square-triangle tilings,
we define such sequences as ‘‘zippers’’ [25]. In Fig. 2(f),
we highlight a single zipper. The zipper lobes, whose
motion enables glide, are marked with a ‘‘z,’’ and the
zipper length, Z, is defined as one plus the number of
zipper lobes.

In crystals of spheres, dislocations can glide arbitrarily
far apart, but in DCs, the zipper length defines their maxi-
mum glide separation. Consequently, dislocation mobility
in DCs is determined by the distribution of zipper lengths.

FIG. 2 (color). Schematic of mechanisms for dislocation nu-
cleation and glide in monolayers of spheres (a)–(c) and dimer
particles (d)–(f). (a), (b) Displacing two spheres (gray) creates a
pair of dislocations, each containing one fivefold and one seven-
fold coordinated particle. (b), (c) The pair glides apart when the
sevenfold particles shift parallel to their Burgers vectors (out-
lined arrows) while all other particles retain their crystalline
positions. (d) A dislocation pair in a DC is created by rotating
one particle (gray) so that its lobes move similarly to the gray
spheres in (a). Glide proceeds through the motion of the lobes
marked with arrows, either by swinging (blue particle) or sliding
(green particle). (e) Nucleation and glide have the net effect of
shifting the left side of the crystal upward and the right side
downward. This slip leaves swinging and sliding particles intact,
indicating accommodation of the dislocation glide. The red
particles, however, would have to be severed by this deforma-
tion. Since the colloidal particles in our suspensions do not
break, the required dislocation motion is blocked by such par-
ticle orientations. (f) The sequence of green and blue particles is
a zipper of length Z � 4. This zipper length sets the maximum
separation attainable using glide.

FIG. 1 (color online). Before-and-after micrographs illustrat-
ing observed dislocation nucleation and glide moves. Particle
lobes have been marked with dots, nearest neighbor bonds are
indicated by lines, and dislocations consisting of paired fivefold
and sevenfold coordinated lobes have been highlighted. (a),
(b) One rotating dimer particle (highlighted with a thick black
dumbbell) nucleates a pair of dislocations. (c), (d) A dislocation
glides down by three rows through a combination of one sliding
move (upper dumbbell) followed by one swinging move (lower
dumbbell).
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The ensemble of all particle orientations that allow glide
for dislocations produced by a clockwise rotation of one
particle is shown in the inset of Fig. 3. Naively, one might
expect to find a zipper of given length with probability
��Z� / �2=3�Z since 2=3 of the particle orientations corre-
spond to swinging or sliding moves. While this crude
approximation accurately predicts that long zippers rarely
occur, it overlooks important correlations between neigh-
boring particle orientations.

Precisely accounting for these correlations is theoreti-
cally challenging; instead, we directly measure ��Z� from
experimentally observed DCs. Zippers in DC grains are
measured by randomly selecting a particle and counting
the number of zipper lobes extending from it. We find that,
on average, zippers are �Zexp � 4:6� 0:2 lattice constants
long [26]. The mean diameter of the observed DC grains is
10� 1 lattice constants. Clearly, ��Z� could be affected by
this length scale. To determine the zipper length distribu-
tion independent of grain size, we prepare ensembles of
large DCs using numerical Monte Carlo moves similar to
those described in [24]. The simulations generate crystals
with 104 lattice sites, but the mean zipper length is still
only �Zsim � 6:18� 0:01 (Fig. 3). The tail of the simulated
distribution is well characterized by the curve ��Z� �
0:37e�Z=4:4, in agreement with predictions of exponen-
tially decaying orientation correlations for dimers on a
triangular lattice [27,28].

While zippers in DCs are on average only several lattice
constants long, shearing or melting processes typically
require the transport of dislocations over much larger
distances. Our experimental observations reveal a mecha-
nism for surpassing the zipper length limit via dislocation
reactions. In such reactions, two dislocations may combine
or one may split apart so long as the sum of the Burgers
vectors is conserved. These reactions allow dislocations to
hop onto nearby zippers intersecting the glide path but
oriented along a different crystalline axis. An experimen-
tally observed dislocation reaction is illustrated in Fig. 4. In
this sequence, a dislocation gliding down from the upper
right approaches the end of its zipper. The defect undergoes
a reaction and splits into two new dislocations. One dis-
location’s Burgers vector is aligned with the horizontal
crystalline axis and glides to the left along an available
zipper, while the second dislocation has moved to the lower
right through a set of moves that are slightly complicated
by the presence of a nearby grain boundary [Fig. 4(b)].

Such reactions could enable dislocations to separate
over arbitrarily large distances along a pathway of inter-
secting zippers. Nevertheless, the existence of such a path-
way does not guarantee that dislocations in DCs are as
mobile as those in crystals of spheres. To elucidate the
difference between the dislocation transport energetics in
the two systems, we compare the cost of separating a single
pair of dislocations over N lattice constants along the
direction parallel to their Burgers vectors in an otherwise
defect-free crystal. In crystals of spherical particles, this
energy increases as Es �

�a2

2��1��� ln�N�, where a is the
lattice constant, � is the 2-D shear modulus, and � is the
Poisson ratio [12,29]. For dislocations separating via inter-
secting zippers in DCs, each dislocation reaction between
zipper segments requires both a core energy to create new

FIG. 3 (color online). Probability distribution of zipper lengths
in both experimental (empty squares) and simulated (solid
triangles) DCs. Counting statistics determine the error bars,
which for the simulations are smaller than the symbols. The
average zipper length measured from experimental DC grains is
�Zexp � 4:6� 0:2. Zippers in simulated crystals with 104 lattice
sites are only slightly longer: �Zsim � 6:18� 0:01. The dotted
line is the best fit exponential for Z > 6, having the form ��Z� �
0:37e�Z=4:4. The inset shows the ensemble of glide-permitting
particle orientations given nucleation via clockwise rotation of
the gray particle. Particle configurations including a subset of
these orientations enable glide via swinging (blue/dark gray) or
sliding (green/light gray).

FIG. 4 (color online). An observed dislocation reaction allow-
ing a dislocation to hop from one zipper to another. Only the
relevant defects have been highlighted, and their Burgers vectors
are indicated by outlined arrows. (a) A dislocation gliding down
from the upper right is one lobe from the end of its zipper.
(b) The dislocation has reacted and proceeds by gliding down
another zipper extending horizontally to the left. A second
dislocation, visible to the lower right of the reaction site, was
emitted to conserve total Burgers vector.
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defects and a separation energy as one defect glides along
the zipper [29]. The energetic cost of separating two dis-
locations by Na along their Burgers direction using the
shortest pathway of connected zipper segments with length
Z0a increases linearly with N: EDC �

�a2

2��1��� ln�Z0��

�4N�Z0

5Z0
�. A detailed calculation of this separation energy

is provided in the supplementary materials [31]. For
crooked or fractal-like pathways, this energy may increase
as an even higher power of N. While dislocation reactions
in which two defects merge can release energy, the pres-
ence of additional dislocations in the crystal does not
guarantee that these would combine with defects produced
at zipper junctions, as would be required to lower the
energetic cost of separation. Furthermore, even though
vacancy-mediated climb could be used to bypass certain
obstacles, vacancy transport in DCs can only occur via
sliding or swinging particle moves, and consequently dis-
location climb is also restricted in DCs.

We expect that the material properties of DCs will be
strikingly different from those of crystals of spheres. DCs
will be more resistant to plastic flow since dislocation
glide cannot proceed along a straight line, as is required
for slip. Furthermore, if the separation energy does grow
linearly with N, we speculate that this will have important
implications for melting. In the KTHNY theory of 2-D
melting, the crystal to hexatic phase transition requires
dislocation pair unbinding [1,2]. The competition be-
tween the energetic cost of dislocation separation and the
entropic contribution to the free energy, both of which
increase as ln�N� for crystals of spheres, determines a
unique melting temperature. If in DCs the separation en-
ergy increases as N, dislocation unbinding may no longer
be feasible at any finite temperature. This suggests that
melting in DCs may occur via additional mechanisms.
Furthermore, the observed geometric restrictions in DCs
may also apply to other dimer systems, such as lipids with
dimerlike head groups [30] and granular dimers [20,21].
For example, these restrictions help explain why ava-
lanches in 2-D piles of dimer beads occur at relatively
high critical angles and require tumbling rather than col-
lective slip [21]. Additional comparative studies between
crystals of spheres and DCs should further elucidate how
the seemingly benign act of pairing particles into dimers
introduces constraints that dramatically alter the material
properties of the crystal.
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PARTICLE SYNTHESIS

The colloidal dimer particles are templated from sac-
rificial α-Fe2O3 (hematite) core particles prepared via
aging of a condensed Fe(OH)3 gel as described in [1]. In
a typical synthesis, 50 mL of FeCl3 (2.0 M) is mixed with
45 mL of NaOH (6.0 M) and 5 mL of the shape-modifier,
Na2SO4 (0.6 M), before being placed in an oven set at
100°C for 8 days. A layer of rhodamine isothiocyanate-
modified silica is then coated on the α-Fe2O3 cores us-
ing a base catalyzed sol-gel reaction under sonication
at 30°C for 4 hours. A reaction mixture comprised of
0.4% hematite powder, 0.25% rhodamine dye solution,
7.1 M deionized water, 0.92 M ammonia, and 17.4 mM
tetraorthoethylsilicate added batch-wise to isopropyl al-
cohol medium produces fluorescent silica shells approx-
imately 65 nm thick. The shells are stabilized with a
non-ionic surfactant, polyvinylpyrrolidone (30000 molec-
ular weight), and finally the hematite cores are selectively
etched by dissolution in 18% hydrochloric acid solution at
room temperature. Before use, the colloidal suspension is
titrated to pH 7, washed via repeated centrifugation and
decanting, and redispersed in deionized water. This syn-
thesis protocal routinely produces 95% pure dimer par-
ticles.

DISLOCATION SEPARATION ENERGY

CALCULATION

In crystals of spheres, nucleated pairs of dislocations
with equal and opposite Burgers vectors ±~b separate by
gliding apart along a straight line parallel to their Burg-
ers vectors (Fig. S1a). This separation allows for re-
laxation of externally applied shear stresses, and also en-
ables the unbinding of dislocation pairs, which is a crucial
component of the KTHNY model of 2-D melting. Using
continuum models of dislocation interactions, the ener-
getic cost of such a separation over N lattice constants

is Es = µa2

2π(1−ν) ln(N), where a is the lattice constant, µ

is the 2-D shear modulus and ν is the poisson ratio [2].
In addition to this continuum interaction, there is also a
core energy required to create the dislocations.

Similarly, the cost for separating a pair of dislocations
with Burgers vectors ±~b in an otherwise defect-free DC
can be estimated for any particular intersecting zipper

FIG. 1: Pathways for dislocation pair separation in crystals
of spheres (a) and DCs (b,c). Pair nucleation occurs at the
location marked with a star in each pathway. (a) Disloca-
tion pair separation is achieved through nucleation and glide
along a straight line parallel to the direction of the defects’

burgers vectors ±~b. This process results in a pair separation
of Na. (b) In an otherwise defect-free DC, an identical dis-

location pair ±~b separates by Z0a, the average zipper length,
before undergoing dislocation reactions and traveling along a
sequence of tilted path segments of length Z0a. This pathway
also results in a separation of Na along the burgers vector di-
rection. (c) The shortest pathway with segment length Z0a
yields a separation of Na along a direction rotated by π/6

from the axis of the burgers vectors ±~b′.

pathway. For example, consider the pathway schemati-
cally depicted in Fig. S1b. In this scenario, two dislo-
cations nucleate and initially glide apart along a straight
line parallel to their Burgers vector, mimicking the sit-
uation observed in crystals of spheres. However, after
separating by a characteristic distance Z0a, equal to the
average zipper length, the defects each undergo disloca-
tion reactions, turning to travel along a new zipper seg-
ment of length Z0a extending along a different crystalline
direction. At each reaction site, an extra dislocation is
produced, which is assumed to remain stationary.

The energetic cost of separating the dislocations along

the initial straight segment in Fig. S1b is µa2

2π(1−ν) ln(Z0).



2

Again, there is also an additional core energy required
to create a new dislocation at the junction. Each addi-
tional segment requires more energy, and includes con-
tributions from interactions between all the dislocations
along the pathway. The magnitude of the force between
dislocations decreases as the inverse of their separation.
Consequently, the largest force on a dislocation moving
on a given segment will come from the dislocation near-
est to it. The energy required for such a separation is

Ereac = 1
2

µa2

2π(1−ν) ln(Z0). Adding up these energy contri-

butions from each reaction, as well as the cost of the first
straight segment, the total energetic cost for the pathway
depicted in Fig. S1b is then

EDC(Z0, N) =
µa2

2π(1 − ν)
ln(Z0) +

8(N − Z0)

5Z0
Ereac

=
µa2

2π(1 − ν)
ln(Z0)

(

4N + Z0

5Z0

)

.

This separation energy grows linearly with final separa-
tion N , in contrast to the logarithmically growing energy
for dislocation separation in crystals of spheres. We also
note that this is a conservative estimate that excludes
the additional core energy costs at each junction. In the
limit that the average zipper length Z0 approaches the
separation distance N , the energetic cost obtained for
crystals of spheres is recovered.

The above energetic cost estimation is only strictly
valid for the particular scenario depicted in Fig. S1b.
However, it represents a conservative energetic cost es-

timate for any pathway spanning N lattice constants
along the initial Burgers vector direction, since any other
option would require additional segments and disloca-
tion reactions. If the defects are allowed to separate
by Na along any direction, then the shortest possi-
ble pathway is the −π/3,+π/3 sequence shown in Fig.
S1c. The energetic cost for separating along this path

is µa2

2π(1−ν) ln(Z0)
(

2N+
√

3Z0

2
√

3Z0

)

, which still grows linearly

with N . More crooked pathways with many more seg-
ments could result in an energetic cost of separation that
grows as a higher power of N .

We note that in a real system, it is unlikely to find
one isolated dislocation pair separating in an otherwise
perfect crystal. The presence of a thermal bath of dislo-
cations may enable other less expensive mechanisms for
pair separation. However, since all dislocation motion
is geometrically constrained, the presence of additional
dislocations in the crystal does not guarantee that these
would be able to combine in merging dislocation reac-
tions, as would be needed to lower the energy of sepa-
ration. Future studies of the mechanisms of dislocation
unbinding should help elucidate which additional mech-
anisms can make such separation energetically feasible.
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