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I. DERIVATION OF THE SALSA METHOD

A. Derivation

For a hard-sphere colloidal system, its bulk pairwise Brownian stress can be calculated

by an integral over the three-dimensional pair correlation function g(�r) [1–4].

σB
ij = nkBTa

∫

S2

r̂ir̂jng(�r)dS2 + nkBTδij (1)

Here, n is the number density of particles, kBT is the thermal energy, a is the particle

radius, and i, j are the indices of the stress tensor. The second term is the ideal gas stress

contribution arising from the kinetic energy. The off-diagonal components of the first term,

which usually dominate at high volume fractions, simply capture the anisotropy of g(�r)

at contact surface S2. To determine the stresses at the particle-level, we write the pair

correlation function, g(�r), as an ensemble average of delta functions.

σB
ij =

〈
kBTa

Ω

∫

S2

r̂ir̂j
N

V

V

N2

∑
α

∑
β �=α

δ(�r − �rαβ)dS2

〉
+ nkBTδij

=

〈
1

N

∑
α

kBTa

Ω

∫

S2

r̂ir̂j
∑
β �=α

δ(�r − �rαβ)dS2

〉
+ nkBTδij (2)

where V , N , Ω are system volume, particle number, and particle volume, respectively. The

bracket 〈...〉 denotes an average over configurations and can be replaced with a time average

in our system. In Eq. 2 we identify the outer sum as being an average over the particles in

the sample, so we obtain an individual stress tensor for each,

σα
ij =

kBTa

Ωα

〈∫

S2

r̂ir̂j
∑
β �=α

δ(�r − �rαβ)dS2

〉
+ nkBTδij

=
kBTa

Ωα
Ψ̄α

ij + nkBTδij (3)

The elements of the sum Ψ̄α
ij can be identified as the fabric tensor linear density of

particle α as the units work out to be [1/L]. This fabric tensor density directly reports the

angular distribution of neighbors in contact with a particle while the magnitude of its trace

is related to the total number of neighbors. To calculate Ψ̄α
ij in simulation and experiment,
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it is necessary to perform an average over a narrow interval ∆ � 1

Ψ̄α
ij =

〈∫

S2

∑
β �=α

r̂ir̂jδ(�r − �rαβ)dS2

〉

≈

〈
1

∆

∫

S2

∫ a+∆

a

∑
β �=α

r̂ir̂jδ(�r − �rαβ)dS2dr

〉

=
1

∆

〈∑
β∈∆

r̂αβi r̂αβj

〉
(4)

where ∆ is the thickness of the measurement shell and r̂αβ is the unit vector connecting the

centers of particles α and β. Using this particular form, the SALSA formula reads

σα
ij =

kBT

Ωα

( a

∆

)〈∑
β∈∆

r̂αβi r̂αβj

〉
+ nkBTδij

=
kBT

Ωα

( a

∆

)
Ψα

ij(∆) + nkBTδij (5)

where Ψα
ij can now be identified as the fabric tensor of particle α. In general, the shell

thickness ∆ � 1 should be small enough that the measurement result σα
ij becomes indepen-

dent of the particular choice of ∆. In the calibration section, we perform experiments and

simulations to confirm this independence. The details concerning the particle volume Ωα

and converting the pointwise stresses to continuum fields are discussed in later sections.

Finally, it is possible to extend our particle-level stress calculations to other finite poten-

tials including the depletion force [5–7], paramagnetic [8] and electrostatic [9] interactions,

and soft particles [10, 11]. While similar calculations have been performed at the bulk

scale [8], extending our method to these systems would allow us to further investigate their

heterogeneous elastic properties.

B. Local structural anisotropy tensor

The local structural anisotropy tensor reports the instantaneous arrangement of collid-

ing neighbors. The trace of this tensor, r̂ir̂i, is the total number of neighbors while the

remaining terms capture the anisotropy of the collisions. As an illustration, we consider a

two-dimensional case. Assuming one particle is at the origin and in contact with one other

particle at an angle θ with respect to the x-axis then the fabric tensor can be written as

4
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rirj =


r̂xr̂x r̂xr̂y

r̂yr̂x r̂yr̂y


 =


 cos2 θ sin θ cos θ

sin θ cos θ sin2 θ


 .

Here, the trace sin2 θ+cos2 θ is always 1 and a maximum shear is achieved at four locations,

θ = ± 45◦ and ± 135◦. These directions correspond to the maximal compression and

extension axes. For instance, if θ is 30◦, then the trace is (sin2 30◦)+ (cos2 30◦) = 1, and the

shear component is x̂ŷ = ŷx̂ = (sin 30◦)(cos 30◦) =
√
3/4. Similarly, if θ is 90◦, while the

trace remains unity, the shear component becomes x̂ŷ = ŷx̂ = (sin 90◦)(cos 90◦) = 0.

C. From pointwise functions to continuum fields

In the literature of molecular dynamics simulation, the virial

sαij =
1

2

∑
β �=α

∂V (r)

∂r

rirj
r

+mvivj (6)

has been widely used to report stresses at the atomic level [12–14]. In particular, this quan-

tity has been used to measure many interesting phenomena including the stress correlation

length in liquid metals [13] and stress fluctuations near grain boundaries [14]. While the sum

of the virials sij divided by system volume V yields the bulk stress of the system, there are

multiple choices that can be made as to how to incorporate local volume variation and how

to smooth the pointwise stress into a continuum field. Similar to the Irving-Kirkwood-Noll

procedure, which constructs continuum fields from the underlying discrete distribution with

phase averaging, we perform a spatial average to obtain a macroscopic measurement at the

particle-level [15]. The final continuum stress field σcont
ij (�x; t) is given by

σcont
ij (�x; t) =

∫

�y∈R
w(�y − �x)σpt

ij (�x; t)d�y (7)

where w(�r) is a weighting kernel function, and σpt
ij (�x; t) is the pointwise function. Here,

the weighting function w must be normalized so that the total energy is conserved during

spatial averaging. We use a normalized Gaussian function that weights values closer to �x

more strongly than other points that are further away:

w(r) = π−3/2r−3
w e

− r2

2r2w (8)
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(a) (b) (c) (d)(b) (c)(a)

FIG. 1: Spatially smoothed stress fields of a simulated polycrystal We plot the smoothed

stressed field of a polycrystal as a function of filter size rw/2a at (a) 0.2 (b) 0.3 and (c) 1. For small

rw/2a, only the points containing particle centers with assigned stresses have nonzero values. As

the value of rw/2a increases, the stress field becomes smoother and more continuous. Note that

since the weighting Gaussian function is normalized, the overall stress of the system is the same for

all different rw/2a. The color scale is adjusted for each sub figure to emphasize the stress variation

features. In all calculations, we use the value rw/2a = 1, where the features of individual particles

are no longer distinguishable.

where r = ‖�r‖, and the filter size rw is chosen to emphasize the length scale of the continuum

fields of interest [15]. Similar smoothing algorithms have been implemented in previous

literature [16–19].

In our experiments and simulations, we set rw/2a = 1 so that we remove stress features

on length scales smaller than a particle. The pointwise stress is constructed by first assigning

calculated particle virial, σα
ijΩ

α to their corresponding grid boxes, then dividing their values

by the box volume. This pointwise function shows singularities at particle centers and zero

elsewhere. Finally, we smooth the field using the Gaussian kernel, Eq. 8. We show the

spatial averaged continuum fields of a simulated polycrystal for three different filter sizes rw

in Fig. 1.

In this spatial averaging procedure, the influence of local volume variation on the stress

distribution is already incorporated. In particular, as the occupied volume of a particle

increases, the stress is proportionally reduced due to the increased effective averaging volume.

Furthermore, the final fields are nearly independent of the grid size and the mean stresses

6
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FIG. 2: Spatially smoothed stress fields of a vacancy. (a)The values of smoothing length

scale rw from left to right are 1.0×2a, 1.3×2a, 2.0×2a, 2.7×2a and 4.0×2a, respectively. (b) The

radial distribution of pressure for different rw.

are constant at all values of rw.

To explore how the filter size rw affects our final SALSA stress fields, we show the ex-

perimental vacancy stress field, σxy for five different values of rw in Fig. 2(a). We find that

the feature of the stress quadrupole [45] remains discernible up to rw = 2.7(2a). Note in

Fig. 2(a), while the quadrupole distribution theoretically diverges as 1/r3, it is cut off by the

lattice and smoothed over the distance rw, squelching the stress features near the vacancy

core. Similarly in Fig. 2(b), we find that the near field of the pressure is strongly affected by

the filter, but the long-range nonlinear pressure ring at rw = 1(2a) and 1.3(2a) match each

other. Indeed, the long-range stresses from all defects have correspondingly slow variations,

and hence will be invariant to the choice of rw. The filter size choice is a balance – hiding

noise at lengths r < rw to enhance features of size r > rw.

In terms of elastic theory, the filter size can be thought of a regularization for the theory,

renormalizing higher order terms in the elastic free energy. To see how smoothing affects

7
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these terms, consider how smoothing changes a linear elastic free energy

F0 =

∫
d3r Sijkl σij σkl (9)

where Sijkl is the elastic compliance tensor and σij is the stress tensor. If we smooth the

stress tensor using a Gaussian kernel of size rw this linear elastic theory changes to

F ′ =

∫
d3r d3k d3k′ Sijkl[σij(�k)e

−k2r2w/2ei
�k·�r][σkl(�k

′)e−k′2r2w/2ei
�k′·�r]

=

∫
d3k Sijkl σij(�k) σkl(−�k) e−k2r2w

≈ Sijkl

∫
d3k (1− k2r2w) σij(�k) σkl(−�k)

=

∫
d3k Sijkl σij(�k) σkl(−�k)−

∫
d3k Sijkl k

2r2wσij(�k)σkl(−�k)

= F0 − r2w

∫
d3k Sijkl(kmσij(�k))(kmσkl(−�k))

What new terms must we add to F ′ to cancel the second term? Since each factor of

k introduces a gradient, we can check that a stress gradient term Sijkl∂m∂mσijσkl has the

correct form.

Sijkl

∫
d3r ∂m∂m(σij σkl) = Sijkl ∂m∂m

∫
d3r d3k d3k′ e−i�k·�rσij(�k) e

−i�k′·�rσkl(�k
′)

= −2Sijkl

∫
d3r d3k d3k′ kmk

′
me

−i�k·�rσij(�k) e
−i�k′·�rσkl(�k

′)

= −2Sijkl

∫
d3k kmkmσij(�k)σkl(−�k)

Indeed, the energy regularized by smoothing by rw is the original free energy plus a filter

size-dependent term times a stress gradient energy:

F ′ ≈ F0 +
r2w
2
Sijkl

∫
d3r ∂m∂m(σij σkl) (10)

Similarly, nonlinear and other terms in the energy will produce regularization-dependent

counter terms. We will now demonstrate that these gradient terms contribute less to the

free energy than other nonlinear terms in the case of hard sphere crystals.

Let us consider the long and short wavelength behavior of the first nonlinear and gradient

terms of the elastic free energy to see which dominates the behavior both close and far from

a defect. For isotropic elasticity, the allowed terms that arise in the free energy density are

F = Cijklεijεkl +Dijklmnεijεklεmn + Eijklmn∂i∂jεklεmn (11)
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where the allowed elements of the elastic constant tensors C, D, and E are determined by

the symmetries of the system being studied. In the case of isotropic materials, these tensors

must be built using terms that are formed by δij and ∆ijkl and Dijklmn, the Kronecker delta

and the four and six index equivalents of the Kronecker delta. That is, the parts of the free

energy may be written

FC = c0 εiiεjj + c1 εijεij

FD = d0 εiiεjjεkk + d1 εijεijεkk + d2 εijεjkεki

FE = e0 ∂i∂iεjjεkk + e1 ∂i∂jεijεkk + · · ·

Which terms should we keep to describe the elastic fields? We consider their contributions

in the case of the elastic field of a vacancy defect – since the displacement field for linear

theory goes as u(r) ∼ ∆V/r2, the strain field goes as ε ∼ ∆V/r3. The quadratic term

then has energy density which scales as r−6, while the nonlinear cubic term (ε3) scales as

r−9 and the gradient term as r−1r−1r−3r−3 = r−8. For short range behavior, the nonlinear

contributions are nearly equal, with the cubic term contributing more for r � 1. However,

we also need to consider the magnitude and scaling of the coefficients for each term. In the

case of the cubic elastic constants, we know from the equation of state that the pressure

diverges at maximal packing as P ∼ (φc−φ)−1, implying that e.g. the bulk modulus diverges

as K = φ∂P
∂φ

∼ (φc − φ)−2 [20]. If we write the scaling in terms of the two length scales in

the problem, the lattice constant a and the surface to surface distance ∆, we find that the

cubic term in the free energy goes as (a/∆)−2r−9 and the first gradient term as a2r−8. In

the case (a/∆) � 1, we find that the cubic terms dominates the gradient contributions. It

is for this reason as well as the fact that gradient terms are not unique in our smoothing

scheme that we only consider nonlinear elasticity without gradient terms.

II. CALIBRATION OF THE SALSA METHOD

To validate our SALSA measurements, it is crucial to calibrate the method and evaluate

its performance and dependence on input parameters. We divide the calibration section

into three parts: A) comparison with simulation stresses, B) contact criteria dependence,

and C) force balance in a smoothed field. We show that the SALSA method accurately

captures the stress fields as calculated by Brownian dynamics very well. The stress field

9
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determined by using SALSA is not significantly sensitive to the particle contact criteria e.g.

the shell thickness ∆. Finally, we discuss a systematic residual force within the vacancy core

in the continuum stress field due to the smoothing process and compare the elastic fields to

similarly smoothed continuum calculations.

A. Calibration: SALSA versus actual stress

To evaluate how well SALSA is able to report the correct stress field of a complex sys-

tem, we use Brownian dynamics (BD) to generate a vacancy in a simulated crystal, whose

orientation is matched to that found in our experiments. We use SALSA to determine all

six independent stress components and compare their values with the BD stress calculation

using the same set of position data (see Fig. 3). The continuum stress field from BD is

constructed by spatially averaging pointwise virials Fixj. We see that the BD and SALSA

stresses exhibit a good match. We also find that SALSA stresses become more quantitatively

similar to the actual stress fields as a longer time-average is performed (not shown).

σxx σyy σzz σxy σxz σyz

SA
LS

A
Vi

ria
l s

tre
ss

FIG. 3: SALSA and actual stresses comparison. Stresses determined through the SALSA

method (top row) are compared with the stresses directly calculated in simulation (bottom row)

using the same dataset.

B. Calibration: Contact criteria dependence

There is another parameter in the SALSA method, which is the shell thickness ∆ used to

identify particles in contact. This shell thickness directly determines the number of particles

10
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FIG. 4: SALSA pressure versus ∆ in experiment and simulation. Pressure measured using

different shell thickness ∆ is plotted as a function of ∆. The pressures values P(∆) are normalized

by P(∆g) where ∆g + 2a is the position of the g(r) first peak, which is denoted by the gray line.

The vacancy experimental data (red curve) shows that SALSA method generates quantitatively

consistent results in a wide range of shell thickness 0.03(2a) ≤ ∆ ≤ 0.15(2a) (shaded area). The

corresponding length scale of this thickness range is 40 nm ≤ ∆ ≤ 230 nm. The simulation data

(blue curve) demonstrate an even wider pressure plateau that extends beyond ∆ ∼ 10−4(2a). The

diverging trend of the experimental pressure at small ∆ occurs due to slight particle overlaps arising

from featuring uncertainties.

that are included in the stress calculation, larger ∆ allowing for shorter time averages.

However, at large ∆, the radial distribution of particles g(r) will vary through out the

thickness of the shell, leading to systematic errors in stress. We test for the optimum

by calculating the pressure of a system versus ∆/2a. Fig. 4 shows the SALSA pressure

P (∆)/P (∆g) versus ∆/2a for both experimental and simulation data. Here, ∆g/2a (gray

line in Fig. 4) is the cutoff thickness used throughout our analysis of the experiments, where

2a + ∆g roughly coincides with the first peak of g(r). We find that the measured pressure

has negligible dependence on ∆/2a for ∆/2a ≤ 0.12. In the experiment the normalized

pressure deviates from 1 when ∆ is smaller than ∼ 3% of the particle size, corresponding

to ≈ 1/4 of a pixel (∼ 35 nm). This trend arises due to particle overlaps from featuring

uncertainties. Overall, as shown in Fig. 4, both the experimental and simulation results

indicate an insignificant correlation between the SALSA pressure and shell thickness ∆ in

11
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the range of 35 nm ≤ ∆ ≤ 230 nm (yellow shaded area).

Pressure σxy
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(a)

(b)

(c)
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FIG. 5: Pressure and σxy fields for different ∆ Pressure (middle row) and shear stress σxy

(right row) distributions for four different values of shell thicknesses. (c) The contact criteria used

throughout our experiments. The pair correlation functions g(r) (left row) are plotted to illustrate

the differences between the shell thickness ∆ choices (orange lines).

Finally, we also investigate how the shell thickness ∆ affects the spatial distribution of

stresses. We show the experimental pressure and σxy fields near a vacancy for four different

∆ in Fig. 5. Again, we find that the stress fields for all ∆ demonstrate qualitatively similar

trends, where the pressure exhibits an enhancement surrounding the defect core and σxy

shows a quadrupole distribution. This weak ∆ dependence is consistent with the previous

experimental studies [21, 22] where the authors have found that different contact criterion

consistently generate similar bulk Brownian stresses. Here, we provide a similar calibration

but at the particle level. As shown in Fig. 5, it is remarkable that SALSA is able to produce

consistent results with a wide range of shell thickness 35 nm ≤ ∆ ≤ 150 nm. This wide
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FIG. 6: Force balance of vacancy. The right-most frames show the divergence of the stress

fields from simulation (a) and continuum theory (b). In the group of nine panels in each of these

subfigures, we show the components of the divergence of the stress. Summing along each row, we

find the total force as the sum of the gradients. Both the BD simulation and continuum elastic

fields show systematic force dipoles in their center indicating that the small residual forces are

produced not from the SALSA method but from the choices made in creating a continuum field.

window of ∆ choice promises robust stress measurements in the typical colloidal experiments

with 3D imaging, where the particle positions can be precisely determined with a sub-pixel

resolution (≤ 50 nm) using standard featuring algorithms.
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C. Calibration: Mechanical equilibrium of a smoothed field

In principal, it is possible to further determine the continuous force field by calculating

the divergence of the smoothed stress distribution. In our experiments, where all the stud-

ied regions are stationary, the calculated force field should be zero implying a mechanical

equilibrium. It has recently been shown that this mechanical equilibrium of the microscopic

stress closely depends on the details of the stress definition at particle-level [23]; it is im-

portant to check it for SALSA. To investigate this issue, we calculate the divergences of

the vacancy SALSA stresses in simulation (Fig. 6 (a)). We find that the force fields are

consistent with zero everywhere except the region of the defect core, where the force shows

a dipole distribution in all components. Since there is no particle in the region that violates

mechanical equilibrium, it is unclear whether this force imbalance leads to a particle drift

or not. Nevertheless, to confirm that this is only a result of the smoothing procedure, we

perform a similar analysis on calculated continuum elastic fields. In doing so, we mimic the

SALSA measurements by introducing a pressure hole in the center, and smooth the stress

fields with the same kernel used in the simulation. As shown in Fig. 6 (b), the force fields

from continuum theory also display force dipoles consistent with SALSA and BD stress

fields. This consistency clearly indicates that the force imbalance mostly arises from the

pressure drop and smoothing algorithm rather than the SALSA calculation.

To further characterize the magnitude of the force imbalance, we perform a similar me-

chanical equilibrium calibration in a simulated polycrystal. In particular, we construct a

three dimensional box enclosing a grain boundary. Then we determine the net force acting

on this box by calculating the tractions from stresses. We find that the forces correspond

to the shear and normal tractions approximately cancel each other, indicating a good me-

chanical equilibrium. The residual force can then be related to a drift arising from this

force imbalance given that the system is over-damped. Finally, we find that the drift, which

is independent of the box size, is less than 5% of the particle diameter over the entire

simulation.
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III. VACANCY STRESS FIELDS

A. Experimental details

We create a colloidal crystal consisting of 1.3 µm diameter silica particles via sedimenta-

tion in a sealed sample cell. The particles are suspended in a water-glycerol mixture with

a refractive index matching the silica particles. This matched refractive index allows us to

acquire confocal images of the sample. Vacancy defects form spontaneously during sedi-

mentation (along with stacking faults and grain boundaries), and are imaged directly using

a high-speed confocal microscope. In the measurements, we select isolated vacancies that

contain no other defects within five lattice spacings in the plane or in either of the adjacent

layers perpendicular to the plane.

Since the system is thermal, it is important to perform a time average to correctly de-

termine the equilibrium stress field. Therefore, we record, analyze, and average the stress

fields over 60 snapshots (20 seconds). We further average the stress field over 20 vacancies

to reduce the effects of polydispersity and the local vacancy environment. In Fig. 7, we

show the confocal images of all measured vacancies in the experiment (the horizontal slices

of full 3D confocal image stacks) to illustrate the vacancy morphology. As shown in Fig. 7,

the independent vacancies have random orientations with respect to the microscope and

must be aligned before averaging. With all images aligned in the same orientation, we then

calculate the stress field of each sample and average over 20 seconds. This time interval

is sufficiently long for the colloids to explore the local phase space as the time required to

diffuse one particle separation (100 nm) in the absence of obstructing neighbors is about

0.35 s. Finally, we average the per-vacancy stress field over all 20 samples.

Since SALSA solely relies on the particle positions to determine the stress field, the cor-

rectness of final measurements directly depends on the accuracy of particle featuring and

noise in the experiment. We employ both time and sample averages to remove noise and

improve such measurement accuracies. Uncorrelated noise such as the current noise in the

electronics, can be effectively reduced by using a time average. On the other hand, there

is correlated noise that result in a persistent featuring bias in time, including spherical

aberration in the optics [24–26], the microscope point-spread-function [27–29], and particle

polydispersity [30]. In the vacancy experiment, we minimize the effects of spherical aber-
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FIG. 7: Confocal images of 20 isolated vacancies.

ration and point-spread-function by index-matching the sample within 0.1% and confining

the imaging field to a few particles away from the coverslip. Polydispersity also affects our

ability to determine which particles are in contact. For instance, when two larger particles

are touching, the SALSA method may identify them as not in contact because their center-

to-center distance is larger than 2〈a〉+∆, the mean distance between particles plus the shell

thickness. The polydispersity (≈ 35 nm for our silica colloids) is about 30% of the shell

thickness ∆ = 106 nm used in our experiment. In the vacancy experiment, by averaging

the stress field over 20 different samples, the collision uncertainty due to polydispersity is

further reduced by a factor of
√
20 = 4.5.

Furthermore, we find that the polydispersity has different effects on the pressure and

shear stress measurements. We show two representative stress components σxx and σxy,

first time averaged, Fig. 8 (a) and (b), and then with an additional sample average, Fig. 8

(c) and (d). We find that the pressure does not fully capture the enhanced stress ring

around the vacancy defect if only a time average is applied. However, the shear component

of the same time-averaged data already shows a clear quadrupole structure that is very

similar to the one with additional sample averaging. This finding implies that while the

pressure measurement may rely on a more precise identification of touching particles, the

shear measurement is relatively robust and insensitive to the noise. In contrast to the normal

16
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FIG. 8: Effects of sample average. Comparison of time average and sample average on a

normal component σxx (a,c) and shear component σxy (b,d). We see that sample average improves

the measurement of the normal component more than the shear components due to the effects of

polydispersity.

stresses that are strongly associated with the collision (touching) probability of surrounding

particles, the shear components are more related to the angular anisotropy of the neighboring

particle configurations. Finally, it is also possible to avoid the effects of polydispersity by

determining the individual particle size and taking the size variation into account [31].

B. Simulated vacancy stresses

We confirm the experimental findings by simulating the stress of a vacancy in a colloidal

crystal using nearly hard-sphere Brownian dynamics. Here, we numerically simulate the

Langevin dynamics of N particles interacting through a very sharp radial potential V (r).

We do so using cell neighbor lists calculated on an NVIDIA GPU integrating with the

velocity Verlet algorithm. The virials of each particle, calculated through Eq. 6, are used to

compare directly to the stresses calculated with the SALSA method.

Based on previous literature [22], we have tried several interparticle potentials including

the Yukawa potential, pure power law, and smoothed power law. Here we use the smoothed

17
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power law to ensure continuity in derivatives:

V (r) = E
(

r

r0
− 1

)2 (r0
r

)24

(12)

To simulate the vacancy, we begin with a periodic cell of a fcc crystal with the same phys-

ical parameters as the experimental setup. We create a periodic cell containing 214 = 16384

particles at a packing fraction of φ = 0.59, temperature T = 300 kBT and viscosity η = 103.

We remove the center particle and simulate for 2500 snapshots where each snapshot is sep-

arated by t = 10τ diffusion times. The stress of these particle configurations is calculated

using both the simulation virial and SALSA and averaged over the entire simulation time. A

direct comparison of these stress fields can be found in Fig. 3. We do find some quantitative

differences between the experiment and simulation. For example, the pressure of the simu-

lated vacancy is plotted as a function of distance from the defect core in Fig. 9. While the

morphology in each individual stress component is very close to that seen in experiments,

we do not find as strong of a pressure enhancement around the simulated vacancy. This

softening is most likely due to the softened core of the potential we use. Overall, however,

all the qualitative features are reproduced in each of experiment, simulation, and theory.
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FIG. 9: Vacancy pressure distribution Comparison of experimental (blue dots in (a)), theoret-

ical (red line in (a)), and simulation (green line in (b)) pressure. Despite its relatively insignificant

feature, the simulated vacancy pressure also exhibits a pressure enhancement at r ∼ 4a. All indi-

vidual stress components in experiment, theory, and simulation show qualitatively similar results.
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C. Continuum elastic theory

1. Linear elasticity

To further measure the performance of SALSA, we also compare the stress fields calcu-

lated in simulation and experiment to the corresponding continuum elastic theory. In linear

isotropic elastic theory, a vacancy’s displacement field can be described by a radial function

determined entirely by the local volume change ui(r) = ∆V/r2 r̂i. This can be seen by

looking at the elastic free energy which can be written

Flinear =
1

2
Kε2ii + µ(εij − 1/3 δijεll)

2 (13)

where K is the bulk modulus, µ is the shear modulus and εij the strain tensor, the sym-

metrized Jacobian of the displacement field u, εij = 1/2(∂iuj + ∂jui). Since the material

is isotropic, we make u a radial function such that ui(�r) = u(r)r̂i. We then minimize the

free energy with respect to this displacement field through the Euler-Langrange equations

∂F
∂ui

− ∂
∂xi

∂F
∂∂ui

= 0, giving a differential equation for the displacement r2u′′ + 2ru′ − 2u = 0

whose solution is given by

u(r) =
∆V

4πr2
+

P∞

3K
r (14)

Here, ∆V is the local volume change, P∞ is the pressure at long length scales due to boundary

conditions and K is again the bulk modulus. This displacement field leads to a strain and

stress field in linear elasticity that has the form

εij =
1

2
(∂iuj + ∂jui)

=
u

r

(
δij −

rirj
r2

)
+ u′ rirj

r2

σij = Kεllδij + 2µ(εij − 1/3δijεkk)

= K
(
2
u

r
+ u′

)
δij + 2µ

(u
r
− u′

)(
1

3
δij −

rirj
r2

)

Using this stress field, we find the pressure field is a constant

P = σii/3 = K
(
2
u

r
+ u′

)
= P∞ (15)
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2. Geometric nonlinearity

However, both the simulation and experimental data show a pressure ring that suggests

we need to move to higher order elasticity to accurately describe the stress field of the

colloidal vacancy. The first natural attempt to capture this ring can be done by including

the geometric nonlinearity (also known as finite strain), an extra term in the strain field

that makes it rotationally invariant but is higher order in displacement. Doing so, we find

that

εij =
1

2
(∂iuj + ∂jui + ∂iuk∂juk)

=
u

r

(
δij −

rirj
r2

)
+ u′ rirj

r2
+

1

2

[(u
r

)2 (
δij −

rirj
r2

)
+ u′2 rirj

r2

]

= Ū
(
δij −

rirj
r2

)
+ Ū ′ rirj

r2

where we can define Ū = u/r+1/2(u/r)2 and Ū ′ = u′+1/2u′2. We then calculate the stress

which is linear in the strain, arriving at the same answer as previously, except with these

variables substituted. Lastly, we find the differential equation for the radial displacement

field via the Euler-Lagrange equations, yielding a long nonlinear ODE, which we omit for

brevity. Fitting the experimental data using this form yields a small pressure enhancement

which cannot be tuned to quantitatively match the experimental data without resorting to

unphysical values for the bulk and shear modulus.

3. Nonlinear elasticity

Motivated by arguments made in Section II, we next calculate the stress field incorpo-

rating the leading terms in nonlinear isotropic elastic theory. In particular, we modify the

free energy such that

F ′ = Flinear +
α

3
εiiεjjεkk +

β

6
εijεjkεki +

γ

4
εiiεjkεjk (16)

We insert the definition of finite strain into the new free energy to arrive at another
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differential equation for the displacement field as a function u(r).

r5(24r(λ+ 2µ)u′′(r) + 6(α + β + γ)u′(r)5

+ 4u′(r)3(2(8α + 3(4β + 2γ + λ+ 2µ)) + 15r(α + β + γ)u′′(r))

+ 4u′(r)2(8α + 6(2β + γ + 4λ+ 6µ) + 9ru′′(r)(2α + 2β + 2γ + λ+ 2µ))

+ 24u′(r)(2(λ+ 2µ) + ru′′(r)(α + β + γ + 3λ+ 6µ))

+ 3u′(r)4(2(6α + 8β + 5γ) + 5r(α + β + γ)u′′(r))) + 2r4u(r)(8(r(α + 3(β + λ))u′′(r)

− 3(λ+ 2µ)) + 3(α+ 3β)u′(r)4 + 12(α+ 3β)u′(r)3 + 4u′(r)2(5α + 3(6β + λ) + 3r(α + 3β)u′′(r))

+ 8u′(r)(α + 3(β + λ) + 3r(α + 3β)u′′(r))) + 4r3u(r)2(2(r(2α + 9β + 3λ)u′′(r)

− 3(2α+ 4β + γ + 6λ+ 6µ)) + 3u′(r)2(α + 6β + r(α + 3β)u′′(r)) + 6r(α + 3β)u′(r)u′′(r))

+ 4r2u(r)3(2(−13α− 6(5β + γ + λ+ µ) + r(α + 6β)u′′(r)) + (α + 6β)u′(r)2 − 2(α + 6β)u′(r))

+ 2ru(r)4(−32α− 72β − 15γ + r(α + 6β)u′′(r)− 2(α + 6β)u′(r))− 6u(r)5(2α + 4β + γ) = 0

We use this nonlinear ODE to fit the pressure profile found in the experimental data using

only the purely compressional third-order elastic constant α = 3.6 Pa, leaving β = γ = 0.

In this same fit, we set the other elastic constants K = 0.093 Pa and µ = 0.092 Pa based on

studies of hard sphere elastic constants [32]. We also set the volume change ∆V = −0.083 to

be the same as the experimental value. In this fit, we are able to reproduce the experimental

pressure ring with one third-order elastic constant and one initial condition (u′ far from the

vacancy).

The value of α we find from our fit of the pressure ring is consistent with the variation

of bulk modulus with packing fraction as calculated by hard sphere simulations. We can

directly compare these values using the equation of state. Given the pressure of a hard

sphere system as a function of packing fraction, P (φ), we can expand the elastic constants

as K(φ0) + K ′(φ0)(φ − φ0) +
1
2
K ′′(φ0)(φ − φ0)

2 + · · · giving α = K ′(φ0) = ∂φ(φ∂φP )|φ0 .

Using the functional form for P (φ) we get that α(0.59) ≈ 3.0 Pa in agreement with our fit

α = 3.6 to experimental stresses using nonlinear elasticity.

4. Vacancy interaction

The overall sign of the interaction between vacancies must be negative as vacancies are

in general attracted to areas of higher pressure just as interstitials are attracted to areas of
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lower relative pressure. In the case of two vacancies, the local increase in pressure around one

vacancy acts as a higher pressure region for the second, causing them to mutually attract.

Physically speaking, the collapse of particles towards the core of one vacancy causes particles

to collide more frequently which is relieved by the negative volume change given by the

second vacancy.

The above argument gives the dominant nonlinear term (the linear field of one vacancy

coupling to the nonlinear pressure around another). Higher order effects can be repulsive but

are smaller than this leading order term. Specifically, to calculate the attraction or repulsion

of vacancies, we look at the elastic free energy, which strictly speaking is entirely entropic.

In this treatment, we will be calling all entropic contributions aside from the configurational

entropy the elastic energy Eelastic, giving us a free energy density F = Eelastic − TSconf . To

first order, the elastic energy density is Eelastic = σijεij where σ is stress and ε is strain.

We consider the perturbative view of the elastic free energy in the case of the interaction

of two vacancies A and B, which can be expanded into three primary terms, Eelastic =

σA,L
ij εB,L

ij + 2σA,N
ij εB,L

ij + σA,N
ij εB,N

ij where L indicates a linear contribution and N indications a

nonlinear one. In isotropic linear elastic theory, vacancies do not interact making the first

term independent of vacancy separation and leaving us with the second and third terms

of the expansion. The second term is the linear part vacancy B’s quadrupole strain field

sitting in the nonlinear (pressure bump) stress field of vacancy A. In this simple case, we

know that the energy can be given by the vacancy quadrupole E = σext
ij QB

ij , where the

strain quadrupole for a vacancy is diagonal QB
ij = ∆V Bδij and σext = σA,N is an external

stress field given by vacancy A. Therefore, the energy can be written E = σext
ii ∆V B =

σA,N
ii ∆V B = PA,N∆V B. Since ∆V ≤ 0 for vacancy defects, this term is negative, leading to

an overall attraction, consistent with previous literature [33–36]. This calculation will have

higher-order corrections due to the nonlinear elastic overlap of the nonlinear pressure rings

∝ PA,NPB,N as well as nonlinear corrections to the pressure bump itself due to the presence

of a second vacancy, but the qualitative behavior remains unchanged.
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IV. DISLOCATION STRESS AND STRAIN FIELDS

A. Experimental details

The dislocation is produced by templating the [100] axis on a glass coverslip at a registry

1.5% larger than the equilibrium lattice constant [37]. Particles are sedimented onto the

substrate forming a single face-centered cubic crystal. As the crystal thickness reaches

about 31 µm, a significant number of dislocations spontaneously nucleate and grow. We

then image the three dimensional microstructure of an isolated dislocation using a confocal

microscope. A schematic of these dislocations is found in the main text.

B. Simulated dislocation stresses

To closely simulate the particular dislocation studied in the experiment, we import the

experimentally measured particle positions into the Brownian dynamics simulation. Prior to

recording the stress, we relax the system to remove overlaps using a soft Hertzian potential

and a large damping factor to ensure very little rearrangement. We then freeze the border

particles as labeled in red in Fig. 10 to ensure that the topologically constrained dislocation

does not migrate. After performing a time average, we find that the calculated stress field,

both through virial calculation and SALSA method, are in excellent agreement with the

experiment, providing a confirmation to the SALSA measurements. Importantly, since this

simulation procedure only requires a single snapshot of data for the initial condition, this

technique can be particularly useful in determining stresses in the experimental cases where

time average is challenging. For instance, it is difficult to perform a time average in a

system where the fluorescent dye photobleaches significantly or the dynamic time-scale is

comparable to the time between acquisition of successive image stacks.

C. Continuum elastic theory

To compare against isotropic linear elasticity, we again calculate the stress field of the

dislocation. The stress field of a dislocation in coordinates where z is along the dislocation
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FIG. 10: Frozen particle border (dislocation). A screen-shot of our Brownian dynamics

simulation of the experimental fcc crystal. In shades of gray are active hard sphere particles while

in red are the frozen boundary particles. Luminance in this picture roughly indicates the position

in the z direction with only a thin slice of the entire simulation shown and darker colors indicating

being deeper into the page. The dislocation line is visible 1/3 from the bottom of the image running

left to right as indicated by the discontinuity in particle shade between adjacent rows.

line, is given by [38]

σxx = −y
3x2 + y2

(x2 + y2)2

σyy = y
x2 − y2

(x2 + y2)2

σxy = x
x2 − y2

(x2 + y2)2

σzz = ν(σxx + σyy)

Using the method known as Dislocation Extraction Algorithm (DXA), we extract the line

dislocation for our partial dislocation [39]. We rotate and translate the theoretical stress

field for a single dislocation, integrating along the length of the dislocation as done in the
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FIG. 11: Strain fields of a dislocation. Experimental measurements of strain using the tech-

nique of Falk et al. [40] showing both compressive (left) and shear (right) strain distributions near

a dislocation defect. The approximate location of the dislocation core is labeled with a (⊥). Notice

that while the trend is very similar to that of the dislocation stress field (as in linear elasticity),

there is a stronger divergence towards the core which is highlighted in the main text in Fig. 3.

experiment and simulation. Doing so, we find an excellent agreement with the other methods

as shown in the main text Fig 3.

D. Strain fields

To investigate the relation between stress and strain, we determine the strain field near the

dislocation. Following a previously developed algorithm [40], we measure the particle-level

strain by quantifying the local affine deformation of individual particles. The compressive

and shear strain (γxz) fields are shown in Fig. 11. We find that the strain fields show

qualitatively similar features found in the stress distributions. However, as illustrated in

Fig. 3(c) of the main paper, the stress-strain curve deviates from linearity near defects

where strains are large.

E. Elastic moduli

Using the strain measurement, we analyze other experimentally accessible cubic moduli

as done in the main manuscript. To that end, we compute the compressive C33 and shear C13

modulus profiles and discuss their behaviors below. We focus on the moduli associated with

the strain component γzz, which shows a larger response than γxx and γyy in our experiment.
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FIG. 11: Strain fields of a dislocation. Experimental measurements of strain using the tech-

nique of Falk et al. [40] showing both compressive (left) and shear (right) strain distributions near

a dislocation defect. The approximate location of the dislocation core is labeled with a (⊥). Notice

that while the trend is very similar to that of the dislocation stress field (as in linear elasticity),

there is a stronger divergence towards the core which is highlighted in the main text in Fig. 3.

experiment and simulation. Doing so, we find an excellent agreement with the other methods

as shown in the main text Fig 3.

D. Strain fields

To investigate the relation between stress and strain, we determine the strain field near the

dislocation. Following a previously developed algorithm [40], we measure the particle-level

strain by quantifying the local affine deformation of individual particles. The compressive

and shear strain (γxz) fields are shown in Fig. 11. We find that the strain fields show

qualitatively similar features found in the stress distributions. However, as illustrated in

Fig. 3(c) of the main paper, the stress-strain curve deviates from linearity near defects

where strains are large.

E. Elastic moduli

Using the strain measurement, we analyze other experimentally accessible cubic moduli

as done in the main manuscript. To that end, we compute the compressive C33 and shear C13

modulus profiles and discuss their behaviors below. We focus on the moduli associated with

the strain component γzz, which shows a larger response than γxx and γyy in our experiment.
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For this analysis we rotate our stress and strain tensors so that the x and y axes align with

the (100) and (010) axes of the cubic system. In this frame, the moduli for an cubic crystal

have the following symmetries: C33 = C22 = C11, and C23 = C13 = C12.

To compute the compressive modulus near the dislocation core, we first determine the

compressive stress σzz and strain γzz. Here, we determine the uniform background strain

(due to the overall pressure arising from confinement and gravity) by matching the measured

modulus to the corresponding theoretical value [41]. We then perform the same analysis used

in the shear modulus calculation, and plot the compressive modulus C33 as a function of

position r/2a in Fig. 12(a). The region of the dislocation core is at r/2a ≈ 5.5 (gray shade).

We find that C33 is higher on the side with an additional half plane of particles. Similarly,

we also observe a reduction in C33 on the other side due to the missing half plane of particles.

We also find that the trend of the shear modulus C23 is similar to the compressive modulus

C33 (Fig. 12(b)), which shows an enhancement on the left side and a reduction on the right.

The moduli we report are only calculated along a line perpendicular to the glide plane of

the dislocation. The other two natural directions along the glide plane are excluded due to

experimental limitations. Along the burgers vector we are limited by the noise in the stress

and strain fields. Since the modulus is the ratio of the two, zeros remain problematic, similar

to issues in deconvolution, and a new method of inference must be applied to the moduli in

these regions. Along the dislocation line, we have already collapsed the data by averaging

the stress and strain fields in this direction in order to reduce noise in the x-z plane. This

averaging makes it infeasible to calculate the modulus variation in this direction. Due to

symmetry, this direction should display a constant modulus. In the future, with a full time

series of dislocation images, we can begin to look at the modulus variation near kinks and

jogs along the dislocation line.
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FIG. 12: Profile of the cubic moduli C33 and C23. (a) Compressive modulus C33 versus position

perpendicular to the glide plane of the dislocation. (b) Shear modulus C23 measured along the

same direction. Both moduli are calculated using the protocol described in the main manuscript.

V. POLYCRYSTAL STRESS FIELDS

A. Experimental details

We show a confocal image of the polycrystal we use in our experimental analysis in

Fig. 13(a). The shown field of view is the same as the one of the stress field reported in the

main manuscript. We show only a slice in the x-y plane of a complete 3D image stack. The

z-interval between adjacent scan slices is 0.135 µm ∼ 0.1 times the particle diameter. By

matching the refractive indices of the water-glycerol mixture and silica particles, we minimize

effects from the point spread function and z-axis spherical aberration, thus optimizing the

image quality. We show the featured particle position with green circles in Fig. 13 (a). The

data are visually overlaid to ensure there are no missing or repeated features.

To investigate the featuring accuracy, we plot the 1D g(r) of the suspension in Fig. 13(b).

As indicated by the sharpness of the first peak of g(r), limiting our field of view to the first

ten layers from the coverslip (in the optical z direction) enables us to accurately feature the

particle positions. The spread of this peak arises from three contributions: featuring errors,

polydispersity, and the thermal fluctuation of the equilibrium separation between particles.

The location of the peak is primarily influenced by particle featuring errors and the packing

fraction of the sample. While the polydispersity of this sample is σ2
a ∼ 5%〈a〉 = 50 nm, this

variation in size will not shift the peak of g(r) from the mean particle diameter (Fig. 13)

unless there are spatial correlations of particle size. Therefore, at most, the averaging
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FIG. 13: Colloidal polycrystal sample. (a) A representative slice of a 3D confocal image stack.

Green circles illustrate the featured particle positions. This overlaid image shows that all particle

positions are correctly identified without any missing particles. (b) The pair correlation function

g(r) calculated using featured particle positions. In the inset we show that the amount of particle

overlap (yellow region) is negligible. (c) A SEM micrograph of two particles showing how the true

particle size was determined in the sample.

featuring errors should correspond to this peak shift of 50 nm.

Furthermore, we show a SEM micrograph to illustrate the roundness of the colloidal

particles and the smoothness of their surfaces, see Fig. 13(c). As shown in the SEM image,

the surface roughness is less than the SEM resolution ∼ 5 nm. We also use the SEM image

to measure the polydispersity of the silica colloids. We find that the polydispersity of the

sample is less than 3% of the particle size, consistent with the specification provided by the

manufacturer.

In the stress measurement of the polycrystal, we average the calculated stress field over

50 stacks of images. The structure of the polycrystal remains unchanged within the acqui-

sition time (∼ 30 s). While we expect to observe short-time stress fluctuations arising from

particle Brownian motion within the acquisition time, we do not find any significant stress

fluctuations on longer time scales.

28

28 NATURE MATERIALS | www.nature.com/naturematerials

SUPPLEMENTARY INFORMATION DOI: 10.1038/NMAT4715

© 2016 Macmillan Publishers Limited. All rights reserved. 

 

http://dx.doi.org/10.1038/nmat4715


FIG. 14: Frozen particle border (polycrystal). A screen-shot of our Brownian dynamics

simulation of the experimental polycrystal. In shades of gray are active hard sphere particles while

in red are the frozen boundary particles. Luminance in this picture roughly indicates the position

in the z direction with only a thin slice of the entire simulation shown.

B. Simulated polycrystal stresses

As with the dislocation stresses, we verified that the experimental stresses are accurate

using a simulation-experiment hybrid. Again we use the experimentally featured particle

positions as initial conditions for our hard sphere Brownian dynamics simulation. For each

experimental snapshot, we remove overlaps and freeze boundary particles as before, then

evolve the system, measuring stresses using both the true virial measurements as well as

SALSA. By averaging over the various snapshots, we arrive at a stress field very similar to

that found by the experimental SALSA calculation.
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FIG. 15: Per-particle virials The experimental polycrystal with particles colored by the mag-

nitude of the fabric tensor (directly proportional to particle virial). While we see large scale

correlations of fabric tensor trace with grain interiors and variation of off-diagonal components

between grains, the magnitude of variation is much smaller than that found in previous numerical

studies of stress distributions in strained polycrystals [14]

C. Virial stresses

In simulation literature, the atomic-level stress has been referred to as the virial of an

individual atom either normalized or un-normalized by the system volume [14, 42–44]. Here,

the virial Fixj can be considered to be a stress that does not account for the local variation

of atomic (particle) free volume. To compare our experimental results with the previous

simulation findings (which do not correct for local particle density fluctuations), we plot

(Fig. 15) the un-smoothed fabric tensor (local structural anisotropy) that is calculated using

SALSA. For detailed information of the fabric tensor calculation, see the section of SALSA

derivation. As shown in Fig. 15, we find that both the pressure and shear stress fluctuations

are evenly distributed throughout the polycrystal. This is in sharp contrast to simulation

results of sheared atomic polycrystals [14], which showed much stronger virial fluctuations

at grain boundaries than in grain interiors.
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