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infrared (Fig. 2b; orange-shaded regions). 
Within this spectral range, hBN is also a 
naturally hyperbolic material, whereby 
optical modes with very large momenta 
can be confined and propagated within the 
sub-diffractional volume of the material11,12. 
As a result, optical confinement to volumes 
that are arbitrarily small with respect to the 
free-space wavelength should be feasible; 
in fact, 2D confinement to a 3-monolayer-
thick (~1 nm) flake via s-SNOM12, and 
3D confinement to volumes 2 × 105 times 
smaller than the free-space wavelength 
using far-field measurements of hBN 
nanostructures11, have been demonstrated. 
When coupled with graphene, strong 
plasmon–phonon interactions are 
anticipated, with hybridized modes 
between these two materials13,14. The 
dispersion relationship of these hybridized 
surface plasmon–phonon polaritons was 
also theoretically predicted by Koppens and 
collaborators2 (Fig. 2b) and independently 
reproduced14. Therefore, not only does 
hBN improve the graphene plasmons, but 
graphene can provide the potential for 

tuning the hyperbolic polaritons in hBN via 
electrostatic gating14. This results in tunable 
behaviour that is not practical within hBN-
only designs due to the extremely large 
bandgap of hBN.

These efforts underline the exceptional 
potential of van der Waals crystals15 
for nanophotonic and metamaterial 
designs. In addition to the hybridization 
of these polariton modes, there is still 
the open question of how the in- and 
out-of-plane vibrational modes of 2D 
crystals are modified when confined 
within such heterostructures. Since the 
operating frequency range for surface 
phonon–polaritons is defined by the 
corresponding frequencies of the optically 
active crystal vibrations (optic phonons), 
it begs the question whether such high-
quality heterostructures can provide a 
pathway to realize tailored nanophotonic 
devices. Such approaches could also lead 
to further polariton hybridization effects 
incorporating plasmons and phonon–
polaritons within other van der Waals 
crystals, thereby opening up an entire 

toolbox for the design of mid- to far-
infrared optics. ❐
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ORIGAMI

Folding creases through bending
The folding of origami structures involves bending deformations that are not explicit in the crease pattern.

Talal Al-Mulla and Markus J. Buehler

Emulating the principles of paper 
folding and translating them to the 
design of new materials and advanced 

applications can be a disciplined, rigorous 
career. From DNA origami to the folding 
of macroscopic sheets1–3, the concepts of 
‘material’ and ‘structure’ fuse in objects 
containing hierarchical features that 
can span from molecular lengths to the 
macroscale. Yet formalizing the rules of 
origami for use in computer modelling 
and simulation has been challenging. 
This is because theoretical models tend 
to be oversimplified, often erroneously 
classifying a foldable origami structure 
as unfoldable. This is the case for the 
square-twist crease pattern4: whereas 
mathematical models predict that the 
structure can’t fold, a simple experiment 
with paper shows that this origami 
structure is indeed foldable (Fig. 1). 
Unfortunately, errors in such mathematical 
models are not readily apparent because 
the reasons of why a structure is actually 

foldable cannot be reconciled with the 
models5. Hence, to avoid theoretical and 
computational shortcomings, researchers 
studying origami mechanics routinely need 
to experiment with articulate physical 
abstractions of origami structures. Writing 
in Nature Materials, Jesse Silverberg, 
Itai Cohen and colleagues now show how 
and why the square twist is foldable6. On 
the basis of the interplay of plastic and 
elastic deformations, they show that the 
difficulties do not lie in the actual folding 
events, but in the abstraction of the folding 
rules. Through an example application, the 
researchers show the potential of taking 
an origami structure, understanding 
its mechanics, and applying what is 
learned to update theoretical models and 
produce origami metamaterials that offer 
new functions.

Silverberg and co-authors found that to 
properly model the folding of the square-
twist pattern they needed to consider two 
distinct modes of deformation: creasing 

and facet bending (the square twist could 
not be folded by creasing alone). In their 
model, creasing is differentiated from 
bending in that creases represent a plastic 
mode of deformation, whereas bending 
is reversible (put simply, creases, but not 
the bending of facets, leave a mark on the 
folded paper). Indeed, folding a piece of 
paper entails first the formation of a fold 
through bending, and then the creation 
of a crease. Importantly, the authors 
show that facet bending and other such 
intermediate reversible steps are crucial 
for modelling the underlying mechanical 
principles of origami. As with the bending 
of shoelaces when tying one’s shoes, 
bending in paper acts as a crutch for the 
folding of origami, and allows for motions 
that would otherwise be impossible (in 
fact, certain origami structures, such as 
the square twist, cannot be made if paper 
were rigid).

Moreover, by coupling origami rules 
with the inherent material properties of 
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hydrogels — in particular, temperature-
dependent swelling — Silverberg and 
colleagues demonstrate that both creasing 
and bending play a major role in origami 
mechanics. The researchers fabricated a 
hydrogel composite with a square-twist 
crease pattern that could fold (the creases 
were actuated by temperature-induced 
swelling) but that did not allow for facet 
bending (this can be done because the 
composite is more rigid than paper). 
They found that after application of stress 
the composite exhibited hysteresis in the 
folding behaviour, and that the hysteresis 
could be removed by introducing 
additional creases where bending would 
otherwise occur. Silverberg and colleagues’ 
work thus exemplifies how origami rules 
can be abstracted for application in 
other materials.

Another core finding of the work 
of Silverberg and collaborators is the 
recognition that, in the same origami 
building block (the square-twist pattern) 
and at the same length scale, there exist 
a hierarchy of mechanically accessible 
energy levels that grant access to 
hierarchies in structure. Such hierarchies 
in structure and energy can be exploited 
further to engineer even more hierarchical 
levels by incorporating additional origami 
building blocks, each with its own 
intrinsic hierarchy of energy levels. And 
accessibility between hierarchies may be 
different for different materials. For paper, 
it is enabled by bending; for the stiffer 
hydrogel composite, by the addition of 
extra creases.

Origami principles have already helped 
in DNA nanofabrication1, the design of 
batteries2, and the study of large-scale 
structural systems and even architecture3. 
Silverberg and colleagues’ study may spur 
the use of origami in other materials and 
make origami structures more accessible 
to computational manipulation and 
optimization. For instance, origami 
methods could enrich computational-
modelling algorithms for the design of 
composite materials with prescribed 
functional states. And hierarchies of 
energy levels in origami structures, which 
have been used in the design of beam 
elements7, could be used to design various 
types of structural unit. Moreover, the 
origami-inspired design of mechanical 
devices could potentially lead to tailored 
mechanisms in other systems, such as self-
folding polymers8.

Furthermore, understanding and 
accounting for overlooked aspects 
of paper folding should facilitate the 
translation of folding mechanisms into 
practical applications. For instance, 

two-dimensional micro- and nanoscale 
materials could benefit from principles 
distilled from origami models. In fact, 
Silverberg and colleagues’ material-

independent approach suggests that 
graphene, which can take many different 
conformations and shapes9 owing to its 
high strength and flexibility10 (Fig. 2), 
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Figure 1 | Folding of the square-twist structure. a–d, The square twist consists of a central square 
connected to four rhombi that are in turn connected to adjacent rhombi by four outer squares. Although 
only creases (blue lines) are visible on the paper origami, bent facets lead to folds (dashed green 
lines) that are largely responsible for the compliance and foldability of the structure. Once creases are 
made, the initially un-creased structure (a) no longer remains flat in the absence of external forces (b). 
When compressed (by pushing the ends marked by red dots closer to each other, for example), the 
structure starts to fold by bending, except for its central facet (c), until it reaches an unbent folded 
configuration (d).

a b c

Figure 2 | Origami with two-dimensional materials. a–c, Graphene and other flexible two-dimensional 
materials may be able to be folded analogously to paper origami. Because of its atomic scale, creases (a) 
and folds (b; dashed black circle) in graphene are completely reversible rather than involving plastic 
deformations. Graphene can also exhibit self-adhesive folds (which can lead to multilayer graphene), thus 
effectively creating creases that adhere to other creases (c, dashed white circle).
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could make elaborate nanomaterial 
structures. Also, the approach holds 
promise for algorithms not related to 
origami. For example, computer-aided 
engineering design can benefit from 
improved origami modelling to enable the 
creation of strong yet light, reconfigurable 
structures for applications in civil 
engineering11. Origami constructs with 
tailored hierarchical energy levels may also 
allow for the control of failure modes in 
engineering structures12. ❐
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A much touted advantage of colloidal 
building blocks, in comparison to atoms 
and molecules, is that the interactions 
between them are tunable. Be it through 
the make-up of the solvent, or the 
chemistry and shape of the colloids, 
these can be designed to arrange into a 
variety of crystals (and also disordered 
solid structures) at suitable densities or 
compositions. However, designing crystal-
to-crystal transitions that can be induced 
by varying the temperature, which is 
easier to control experimentally, has been 
much more challenging. This is because 
typical effective interactions between 
colloidal building blocks rely on attractive 
and repulsive forces (of entropic or 
electrostatic origin, for example) that are 
in practice independent of temperature. 
Hence, most phase diagrams of 
colloidal systems follow the archetypal 
topology — a fluid at high temperature 
and solids (crystals, often pre-empted by 
a glass or gel) at low temperatures.

The inherent programmability of the 
interactions between DNA-decorated 
colloids may change this situation. 
First, the binding force between the 
complementary ends of colloid-tethered 
DNA strands does change significantly 
with temperature (largely because 
of a loss in entropy; R. Dreyfus et al. 
Phys. Rev. Lett. 102, 048301; 2009); 
second, the effective binding energy 
between the colloids can be adjusted by 
designing DNA strands that compete 
for binding. One such strategy involves 
decorating colloids with two types 
of DNA strand that compete for the 
formation of DNA bridges between 
colloidal particles (which promotes 
aggregation) or of DNA loops or hairpins 
on the same particle (S. Angioletti-Uberti, 
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B. M. Mognetti and D. Frenkel Nature 
Mater. 11, 518–522; 2012). Because the 
two types of strand hybridize at different 
temperatures (which can be tuned by 
designing the sequence of the binding 
segments), temperature shifts the balance 
of the competitive binding. This strategy 
leads to the melting of a crystal both 
on heating and on cooling (also known 
as re-entrant melting).

Yet competing interactions can also 
allow for independent control of both the 
topology of the phase diagram and the 
temperature ranges in which transitions 
between phases occur, as recently 
demonstrated by W. Benjamin Rogers 
and Vinothan Manoharan (Science 347, 
639–642; 2015). The researchers used 
strand displacement — a technique that 
employs free DNA strands to displace 
complementary strands in a duplex — to 
design the topology of the phase diagram 
of DNA-coated colloids. In particular, 
they demonstrate an arbitrarily wide 
temperature range for fluid–crystal 
coexistence, and re-entrant melting 
(pictured). To broaden the temperature 
width of the phase-coexistence region, 
the researchers designed the sequences 
of colloid-tethered and free DNA strands 

so that the binding energy between 
tethered DNA strands and between free 
and tethered strands are roughly the 
same. To achieve re-entrant melting, they 
designed two types of free strand that 
compete for binding with colloid-tethered 
strands. In this case, temperature tilts 
the balance between the number of 
bound strands (which maximizes the 
enthalpy by disfavouring the formation of 
DNA bridges between colloids) and the 
number of unbound free strands (which 
increases the entropy by favouring bridge 
formation and thus crystallization). Using 
a variation of this scheme, Rogers and 
Manoharan also programmed a reversible 
temperature-induced transformation 
between two crystals of identical 
symmetry but different composition.

The versatility of strand-displacement 
binding reactions is of course not limited 
to tinkering with the topology of phase 
diagrams. In principle, there seems to be 
no obvious major impediment for similar 
strategies to achieve multistage self-
assembly and disassembly, programmed 
actuation and stimuli-responsive 
reconfigurable systems.
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