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Confined systems ranging from the atomic to the granular are ubiquitous in nature. Experiments and
simulations of such atomic and granular systems have shown a complex relationship between the
microstructural arrangements under confinement, the short-ranged particle stresses, and flow fields.
Understanding the same correlation between structure and rheology in the colloidal regime is important due
to the significance of such suspensions in industrial applications. Moreover, colloidal suspensions exhibit a
wide range of structures under confinement that could considerably modify such force balances and the
resulting viscosity. Here, we use a combination of experiments and simulations to elucidate how
confinement-induced structures alter the relative contributions of hydrodynamic and short-range repulsive
forces to produce up to a tenfold change in the viscosity. In the experiments we use a custom-built confocal
rheoscope to image the particle configurations of a colloidal suspension while simultaneously measuring its
stress response. We find that as the gap decreases below 15 particle diameters, the viscosity first decreases
from its bulk value, shows fluctuations with the gap, and then sharply increases for gaps below 3 particle
diameters. These trends in the viscosity are shown to strongly correlate with the suspension microstructure.
Further, we compare our experimental results to those from two different simulations techniques, which
enables us to determine the relative contributions of hydrodynamic and short-range repulsive stresses to the
suspension rheology. The first method uses the lubrication approximation to find the hydrodynamic stress
and includes a short-range repulsive force between the particles while the second is a Stokesian dynamics
simulation that calculates the full hydrodynamic stress in the suspension. We find that the decrease in the
viscosity at moderate confinements has a significant contribution from both the hydrodynamic and short-
range repulsive forces whereas the increase in viscosities at gaps less than 3 particle diameters arises
primarily from short-range repulsive forces. These results provide important insights into the rheological
behavior of confined suspensions and further enable us to tune the viscosity of confined suspensions by
changing properties such as the gap, polydispersity, and the volume fraction.
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I. INTRODUCTION

Imagine driving on Delhi’s narrow roads. The density of
motorists is very high with vehicles ranging from large
buses and trucks to motorbikes and auto rickshaws all
swerving in and out of their lanes. A similar drama unfolds
in the confined flows of materials ranging from granular
suspensions to colloids and even atoms. Determining how
polydispersity, ordering, and confinement alter these flows

in dense colloidal suspensions is particularly important
since they are used extensively in industrial applications
[1,2], automobile components [3], and common household
products [4–7]. Moreover, such suspensions display rheo-
logical properties that may usefully be compared to atomic
systems at low shear rates [8] as well as granular materials
at high shear rates [9] and a microstructure that can be
imaged in 3D using confocal microscopy.
The ability to image the microstructure enables us to

correlate the suspension structure with its rheology. We
focus on the dense suspension regime since in the dilute
limit the detailed microstructure has little effect on the total
shear viscosity [10]. At large volume fractions, however,
many studies have shown a correlation between the micro-
structure and the rheology. For example, neutron scattering
studies have shown that variations in the viscosity can
be observed when structural changes occur in colloidal
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crystals [11,12]. Further, numerical and theoretical calcu-
lations in colloidal crystals have indicated that the high-
frequency viscosity depends on the crystal structure and
packing [13,14].
The regime of confined flows is especially interesting

since suspensions often display a rich range of structures
below gaps of ∼10 particle diameters. For instance, free-
energy calculations show the existence of over 20 distinct
crystalline arrangements when colloidal spheres are confined
in gaps ranging from 1 to 5 particle diameters [15,16]. Many
of these structures have also been observed experimentally
[17–21]. Under shear, these arrangements often align with
the direction of flow [22,23]. The vast range of structures
formed under confinement [24] suggests dense colloidal
suspensions may have a rich variation in their shear viscosity.
Further motivation to study the rheology of confined

colloidal suspensions comes from granular systems, where
experiments and simulations demonstrate a variety of
viscosity trends under confinement [25–27]. At low volume
fractions, experiments show a decrease in viscosity with
decreasing gap followed by an increase in the viscosity at
gaps corresponding to less than a few particle diameters [25].
In contrast, larger volume fractions show no overall decrease
in the viscosity. Instead, fluctuations are observed that
correlate with the incommensurability of the gap with the
particle diameter [27]. However, the large particle sizes in
granular suspensions makes it difficult to image and, hence,
correlate the microstructure and the rheology. In addition,
very little is known about the origin of these changes in the
rheology. Some experiments attribute the viscosity increase
at extreme confinement to hydrodynamic forces [25] while
other studies suggest that friction is responsible [27]. This
murkiness arises in part due to the difficulty of conducting
studies that combine measurements of structure and rheol-
ogy with simulations in order to distinguish how different
structures alter the relative contributions of hydrodynamic
and short-ranged interaction forces.
Such studies in granular suspensions suggest that a

similarly rich interplay will occur in colloidal systems.
However, while there have been extensive investigations of
the many structural transitions for colloidal suspensions
under confinement, the rheological properties for systems
with small gaps are poorly understood, in part due to the
lack of appropriate instrumentation. In particular, cone and
plate rheometers have a varying gap across the shear region,
and Couette rheometers have a fixed gap, which is difficult
to control with micron-scale precision. Parallel plate
rheometers with circular flow can achieve small gaps but
have a radially varying shear rate. Moreover, these rhe-
ometers are seldom coupled to microscopes, making it
difficult to correlate the microstructure and the rheology.
Early attempts to simultaneously image the particle
arrangements under confined flows studied suspension
transport through capillaries and showed the flow rate
changes with the particle density and ordering [28,29]. In

such measurements, however, it is difficult to determine a
structure-dependent viscosity since the total flow rate
results from an average over a range of shear rates.
These limitations can be overcome in simulations of

confined suspension flows where several studies have
shown that hydrodynamic lubrication forces alone can
cause an increase in the viscosity of a suspension confined
between two parallel walls [30,31]. Other studies have
demonstrated oscillations in viscosity and in normal forces
[32] similar to the fluctuations seen in granular systems
[27]. Such studies, however, are seldom compared to
experiments. Without such comparisons, it is difficult to
rule out contributions due to Brownian interactions and
short-ranged repulsion that are thought to play a role at low
and high shear rates, respectively [10,33–35].
Here, we use a custom-built parallel plate shear cell with

translational flow that loads onto a confocal microscope
to correlate the confinement-induced microstructure with
the confined suspension rheology. Further, we compare the
experimentally measured viscosities to those from the
lubrication-repulsion dynamics and Stokesian dynamics
simulations. This comparison enables us to determine how
microstructure alters the balance of short-ranged and hydro-
dynamic forces to determine the measured viscosity trends.

II. APPARATUS AND METHODS

A. Experiments

To study the effect of confinement-induced structures
on the suspension rheology, we use a custom-built confocal
rheoscope [36]. A schematic of the device is shown in
Fig. 1(a). Briefly, the shear cell has a bottom plate that is a
transparent glass cover slip. The plate is attached to a
piezoelectric stage that can translate along the flow x and
gradient y directions. The top boundary of the shear cell is a
16-mm2 silicon wafer, which is atomically flat. The wafer is
glued with epoxy to a force measurement device. The shear
zone is surrounded by a suspension reservoir that maintains a
constant osmotic pressure boundary condition [Fig. 1(a)]. A
solvent trap is used to prevent evaporation of the suspending
fluid. To achieve a uniform gap, the bottom plate and the
force measurement device are attached to mounting brackets
that can be adjusted using three set screws. The plates can be
made parallel to within 4.3 × 10−3° with a gap h that can
reach 2 μm. The device enables us to simultaneously shear
the suspension, measure its rheology, and image its structure
over a range of gaps, as shown in Fig. 1.
The suspension consists of 2-μm diameter silica micro-

pearl particles from Sekisui Chemical Company. The
particles are suspended in a refractive index matching
mixture of glycerol and water, that is 80-20 by mass
fraction of glycerol water (η0 ¼ 0.06 Pa s at 20 °C). A
small amount of fluorescein dye (2 mg=ml) is added to the
solvent to enable imaging. The volume fraction of silica in
the suspension is 0.52, the densest suspension we could

MEERA RAMASWAMY et al. PHYS. REV. X 7, 041005 (2017)

041005-2



load and confine in our apparatus. For denser suspensions,
the confining forces while loading the top plate are too
large and the bottom glass plate breaks. This volume
fraction corresponds to the crystal gas coexistence regime
in hard spheres. The sample is sonicated and degassed to
remove air bubbles prior to loading into the shear cell.
A linear oscillatory strain is applied to the sample using

the piezoelectric stage attached to the bottom plate, while
nanometer-scale deflections of the top plate are used to
determine the force transmitted through the suspension.
Examples of typical stress and strain curves are shown in
Fig. 1(c). The system response is largely linear, with a
measured stress that is nearly sinusoidal. From the Fourier
transform of the stress response, we find that the third
harmonic is smaller by at least a factor of 10 for normalized
gaps greater than 3. Therefore, we report the magnitude of
the complex viscosity associated with the first harmonic of
the applied frequency.
Gap uniformity in this device is a major challenge since

slight deviations from parallel alignment can generate
unintended parasitic flows. Such effects are particularly
prominent at small gaps where slight variations can lead to
large changes in the applied strain. Thus, to set the gap
between the plates of the shear cell, we use a painstaking
imaging procedure. Briefly, we use the confocal micro-
scope to image the entire gap at 9 equally spaced locations
within the shear zone. We analyze these images and
determine the derivative or change in the total intensity
as a function of height y. The distance between the
maximum and the minimum of this curve gives the gap
between the plates to a precision of 0.1 μm. Importantly,
the suspension is relaxed overnight so that any stress
bowing the bottom cover slip dissipates. To confirm that
this method is precise and that the force measurement
device works accurately at small gaps, we measure the

viscosity of a Newtonian fluid. We find that the fluid
viscosity is constant over the range of gaps (2–100 μm) in
which we are interested, confirming our excellent control
over the shear geometry.
Wall slip presents an additional challenge in dense

suspensions. Typical methods to prevent wall slip such
as roughening the boundaries of the shear zone can no
longer be used as they will cause complications during gap
alignment and imaging. Instead, we measure the effective
strain in the system by imaging the top and the bottom
particle layers. Particle image velocimetry is used to find
the average displacements of the particles at the boundaries.
The difference between the displacement of the bottom and
top layers is divided by the distance between the centers of
the particles to calculate the effective strain in the sample.
Importantly, in order to compare the suspension response at
different gaps, we had to conduct preliminary strain sweeps
at each gap to determine the applied strain that generates
the desired effective strain.
For shear experiments on suspensions, the measured

force response is a sum of three major contributions: the
Brownian, hydrodynamic, and short-ranged repulsive
stresses [33–35,37–39]. The relative magnitude of the
Brownian and hydrodynamic interactions is characterized
by the Peclet number for the system, Pe ¼ 6πη_γa3=kBT,
where η is the viscosity of the fluid, _γ is the shear rate, a is
the radius of the particle, kB is the Boltzmann constant,
and T is the temperature. Since simulations of colloidal and
granular systems have both implicated hydrodynamic lubri-
cation forces as the origin for the rapid viscosity increase as
the gap is decreased to several particle diameters [26,40], we
focus on the large Pe regime where Brownian forces are
negligible, the system is no longer thinning, and the viscosity
depends weakly on the shear amplitude [10,41]. For the
measurements we report here, we achieve a dominantly

(a) (c)(b)

(d)

FIG. 1. The experimental apparatus and sample measurements. (a) A schematic of the shear cell, focusing on the shear zone and the
force measurement device. (b) Confocal images in the shear gradient plane at three different extents of confinement. (c) The applied
strain generated by the piezoelectric stage is depicted by the blue curve. A typical stress measurement that is obtained from the force
measurement device is depicted by the red curve. Importantly, to extract the viscosity magnitude we use imaging to back out the effective
strain amplitude. (d) The magnitude of the complex viscosity as a function of the effective strain rate for the three gaps shown in (b). The
vertical gray dashed line indicates the effective strain rate that is used for the remainder of the experiments.
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linear stress-strain response with Pe ≈ 1700 for all gaps by
shearing at a frequency of 1 Hz and an effective strain
amplitude of γ0 ¼ 1, as shown in Fig. 1(d). Moreover, due to
the small particle size, the Reynolds number is extremely
small and particle inertia can be neglected.
At these large Peclet numbers, Pe ≈ 1700, it has been

suggested that short-range interparticle repulsive forces
contribute to the suspension stress [42,43]. These repulsive
forces can arise from various sources ranging from actual
contact to screened electrostatic repulsion between the
particles. Here, we remain agnostic to the origin of these
forces and use the term short-range repulsion to refer to
them collectively.

B. Simulations

To develop an understanding of the different contribu-
tions to the stress characterizing the suspension rheology,
we conduct two different simulations. The first is a
lubrication-repulsion model that approximates the hydro-
dynamic stresses using a lubrication approximation
between particle pairs and introduces a steep repulsive
particle-particle interaction to prevent overlaps. The second
is a modified Stokesian dynamics simulation that includes
both the short-range and the long-range contribution to
hydrodynamic forces. A comparison between these models
and the data allows for determining (1) the fidelity of the
calculations to the experimental measurements, (2) whether
the lubrication approximation accurately accounts for
the full hydrodynamic stresses under confinement, and
(3) whether hydrodynamic interactions alone account for
the experimentally measured changes in the viscosity.

1. Lubrication-repulsion dynamics

In the lubrication-repulsion model, we solve the equa-
tions of motion for noninertial, non-Brownian spheres of
diameter 2ai translating and rotating with velocity vectors v
and ω, respectively. The spheres are suspended in a
density-matched fluid of viscosity ηf. The particles are
subjected to forces arising due to hydrodynamics and
repulsive particle-particle interactions. For efficient com-
putation, we neglect all hydrodynamic terms other than the
divergent, short-range, pairwise lubrication forces between
neighboring particles [44]. Briefly, this approximation is
valid because in the near-field limit the forces diverge as
a=s and torques diverge as log a=s, where s is the distance
between the particle surfaces and a is the particle radius.
However, the many-body and the far-field terms fall off as
1=r, where r is the distance between the centers of the
spheres. In the limit s=a ≪ 1, the two-body resistance
terms dominate over the many-body and far-field terms
[45–49] and this approximation has shown to deliver useful
quantitative results for dense suspensions where the volume
fraction ϕ is ≳0.4.
The lubrication-repulsion model calculates the hydro-

dynamic force and torque on particles i due to particle j,

with rij the vector pointing from j to i and nij ¼ rij=jrijj,
the force Fh

ij, and torque Γh
ij as

Fh
ij ¼ −asq6πηfðvi − vjÞ · nijnij

− ash6πηfðvi − vjÞ · ðI − nijnijÞ; ð1aÞ

Γh
ij ¼ −apuπηfð2aiÞ3ðωi − ωjÞ · ðI − nijnijÞ

− aiðnij × Fh
ijÞ; ð1bÞ

for 3 × 3 identity tensor I and squeeze asq, shear ash, and
pump apu resistance terms [44], with β ¼ aj=ai, as

asq ¼
2β2

ð1þ βÞ2
a2i
seff

þ 1þ 7β þ β2

5ð1þ βÞ3 ai ln

�
ai
seff

�

þ 1þ 18β − 29β2 þ 18β3 þ β4

21ð1þ βÞ4
a2i
seff

ln

�
ai
seff

�
; ð2aÞ

ash ¼ 4β
2þ β þ 2β2

15ð1þ βÞ3 ai ln

�
ai
seff

�

þ 4
16 − 45β þ 58β2 − 45β3 þ 16β4

375ð1þ βÞ4
a2i
seff

ln
�
ai
seff

�
;

ð2bÞ

apu ¼ β
4þ β

10ð1þ βÞ2 ln
�
ai
seff

�

þ 32 − 33β þ 83β2 þ 43β3

250β3
ai
seff

ln

�
ai
seff

�
: ð2cÞ

The surface-to-surface distance s is calculated for each
pairwise interaction according to s ¼ jrijj − ai þ aj. We
truncate the lubrication divergence and regularize the
contact singularity at a typical asperity length scale smin ¼
0.002aij, where aij ¼ ½ðaiajÞ=ðai þ ajÞ� is the weighted
average particle radius. We set s ¼ smin in the hydro-
dynamic force calculation, when s < smin. The effective
interparticle gap used in the force calculation seff is there-
fore given by

seff ¼
�
s for s > smin

smin otherwise:
ð3Þ

For computational efficiency, the lubrication forces are
omitted (Fh

ij, Γh
ij ¼ 0) when the interparticle gap s is greater

than smax ¼ 0.1aij. The volume fraction is sufficiently high
in the present work that all particles have numerous
neighbors with s < smax, so such an omission is incon-
sequential to the dynamics.
The lubrication-repulsion model further applies a penalty

function to minimize overlap between spheres for which
s < 0, representing a generic particle-particle repulsive
potential. For simplicity, the interaction is modeled as a
linear spring [50], with a normal repulsive force given by
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Fc
ij ¼

�
kδnij for δ > 0

0 otherwise;
ð4Þ

for spring stiffness k and particle overlap δ equivalent to−s.
We find that the simulation results do not depend sensitively
on the value of k or on whether the contact is Hertzian
or Hookean. In particular, increasing k over 3 orders of
magnitude does not quantitatively change the results.
Hydrodynamic and short-range repulsive forces are

summed on each particle, and the trajectories are updated
in a stepwise, deterministic manner according to a velocity-
Verlet scheme. The computational model is implemented in
LAMMPS [51].
To perform confinement simulations using the lubrication-

repulsion model, a shear cell is constructed with upper and
lower confining walls normal to y, with the separation
between the walls being prescribed in advance to achieve a
desired confinement. The walls measure 60a × 60a and are
bound by periodic boundaries in x and z. The walls are
constructed from dense arrays of fixed particles with
diameters one-tenth that of the suspension particles. The
walls interact with suspension particles through the above
repulsive forces [52,53]. The gap between the shear cell
walls is initially populated with randomly located particles
that are allowed to relax before shearing commences.
Taking the simulation cell as a representative control

volume V, the corresponding 3 × 3 bulk stress tensor is
calculated according to

σ ¼ 1

V

�X
i

X
j≠i

rijFh
ij þ

X
i

X
j≠i

rijFc
ij

�
: ð5Þ

The shear stress of interest is the σxy component of σ.
Samples are sheared at a strain amplitude of 1 and at a
frequency that gives a characteristic Reynolds number of
0.01 producing overdamped dynamics such as those found
in the experiments. For each simulation, the sample is
sheared for 10 cycles and the stress from the final cycle is
used to calculate the viscosity in a manner similar to the
experiments. The quantities 4ρ_γa2=ηf and 2_γa=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k=2aρ

p
remain ≪ 1, ensuring noninertial and nearly hard particle
rheology throughout.

2. Stokesian dynamics

Here, we use a variation of the Stokesian dynamics
algorithm to compute the total hydrodynamic contribution
to the viscosity of the suspension. Since current simulation
techniques using Stokesian dynamics are extremely slow
for systems with more than 1000 particles, we use
Brownian dynamics simulations to generate particle tra-
jectories. These configurations generated with Brownian
dynamics are expected to be representative of those from
standard Stokesian dynamics because the particle volume
fraction is large and the particles are strongly confined, so
that hydrodynamic interactions are screened [54]. From the

particle trajectories, we compute the total hydrodynamic
contribution to the viscosity using the Stokesian dynamics
approach.
In the Brownian dynamics simulations we start by

placing 2000 particles randomly in a large simulation
box (volume fraction ϕ ¼ 0.05). The system is periodic in
all three dimensions. The system is thermally equilibrated
for 100 particle diffusion times while shrinking the box
in the unconfined dimensions until a volume fraction
ϕ ¼ 0.52, which matches the experimental conditions, is
reached. The particle trajectories during equilibration are
generated by overdamped Brownian dynamics simulations
using the HOOMD-blue software package [55,56]. After the
equilibration period, the system is sheared at a strain
amplitude 1.3 and frequency 1 Hz for 100 cycles, with
configurations output for analysis 10 times per cycle. The
linear shear rate _γ is implemented using the Lees-Edwards
boundary condition [57]. The particles are represented in
the simulation as hard spheres, with the hard sphere
constraint implemented by the Heyes-Melrose algorithm
[58], which applies a pairwise springlike conservative
force to all overlapping particle pairs. A detailed descrip-
tion of the hard sphere constraints and Brownian dynamics
methodology we use here is described elsewhere for the
case of oscillatory shear [59]. The impenetrable walls are
implemented through the built-in HOOMD wall class using
a purely repulsive shifted Lennard-Jones potential to
represent the particle-wall interactions,

VðrÞ¼
8<
:
4ϵ
h
ðσrÞ12−αðσrÞ6

i
−ðr−rcutÞ∂VLJ∂r

����
r¼rcut

r<rcut

0 r≥ rcut;

ð6Þ
where VLJ is the standard Lennard-Jones potential. For
the purely repulsive wall potential, the dimensionless
simulation parameters are α ¼ 0, σ ¼ 1, ϵ ¼ 1, where
distance σ is made dimensionless on the particle radius a,
and energy ϵ is made dimensionless on the thermal
energy multiplied by the Peclet number, kBTPe,
Pe ¼ 6πη_γa3=kBT. This energy scaling ensures that the
wall forces are strong enough to prevent overlap in the
sheared system. The particle-wall interactions are trun-
cated at rcut ¼ a so that particles experience wall forces
only when they overlap the wall.
The configurations along the trajectories generated with

Brownian dynamics are used to compute the hydrodynamic
contribution to the viscosity via Stokesian dynamics [30].
The specific quantity we report is the high-frequency shear
viscosity, calculated as the mean hydrodynamic stresslet for
a particular configuration. The calculated viscosity is a sum
of the long-range hydrodynamic and short-range lubrica-
tion contributions to the hydrodynamic stress and does not
include any short-range repulsive or Brownian contribu-
tions to the stress.
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III. RHEOLOGY

To determine how the suspension rheology is altered by
confinement, we plot the magnitude of complex viscosity η
normalized by the bulk suspension viscosity ηbulk as a
function of the normalized gap h=2a at an effective strain
rate amplitude of 2π s−1 in Fig. 2. From the experiments,
we find that under increasing confinement, changes in the
viscosity from bulk can be broken up into three regimes
discussed in greater detail below: (1) a decrease in the
viscosity for 15 > h=2a > 6, (2) smaller scale fluctuations
in the viscosity when 6 > h=2a, and (3) a sharp increase in
the viscosity when 3 > h=2a. We find that the lubrication-
repulsion dynamics simulations capture these trends (red
symbols in Fig. 2). We use our imaging capability to test the
hypothesis that changes in the suspension microstructure
are correlated to the observed variations in viscosity in each
of these regimes. To address whether these structural
changes act through short-range repulsive forces or hydro-
dynamics, both of which are present in the lubrication-
repulsion dynamics simulations, we compare our results to
the Stokesian dynamics simulations, which calculate only
the hydrodynamic stress contributions and do not include
additional short-ranged repulsive interactions.

A. Moderate confinement

The key change in the microstructure accompanying the
decrease in the viscosity for 15 > h=2a > 6 is the ordering
of particles into layers parallel to the walls as the suspen-
sion is confined [Fig. 1(b)]. This layering can be seen
more clearly by analyzing the confocal images obtained
experimentally. We feature the particles using a standard
particle featuring algorithm [60]. Histograms of the y
coordinate of the particle centers are plotted with a bin

size of 0.135 μm, which is equal to the z resolution of the
microscope. Sample histograms for the small (h=2a ¼ 3)
and the large (h=2a ¼ 18) gaps are shown in Figs. 3(a)
and 3(b), respectively. In the unconfined system, there is a
uniform distribution in the central region and strong peaks
near the walls, as is expected from the images and previous
literature [61–64]. As the gap decreases, the peaks in the
histogram are more prominent, and the fraction of the
particles in layers increases with strong layering visible at
the smallest gap. The same analysis performed with the
extracted particle positions from the lubrication-repulsion
dynamics simulation and the results are shown in Figs. 3(c)
and 3(d). The simulation results show a similar layering as
the experiments. To quantify this layering, we define the
order parameter:

ξ ¼ 1 −
1

N

XN
i¼0

fimin

fimax
; ð7Þ

where fimin and fimax are the heights of the ith minima and
maxima in the histogram of the y coordinates, as shown
in Fig. 3(a). The sum ranges over all the N peaks in the
histogram. Thus, ξ ¼ 1 for a layered sample and ξ ¼ 0 for a
disordered or homogeneous system. We find that with
decreasing gap, ξ increases [Fig. 4(a)] and the viscosity
decreases [Fig. 4(b)]. A linear fit to the relative viscosity
versus ξ data gives an R value of 0.8031, indicating that
layering is highly correlated with the decrease in the
viscosity.
This correlation between layering and viscosity can arise

from different origins. For example, layering can change
the hydrodynamic viscosity by increasing the fraction of
particles that follow affine trajectories and making it easier

b

FIG. 2. Magnitude of the normalized complex viscosity versus
normalized gap. A fivefold decrease in the viscosity is observed
belowgapssmaller than15particlediameters.Forgaps lower than3
particle diameters a steep increase in theviscosity is observed.Very
similar trends are observed in the experiment (green circles) and
simulation (red squares) data. Uncertainty in the experiments
corresponds to the level of background noise. The gray dashed
line indicates the viscosity trend for a Newtonian fluid.
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FIG. 3. Layering under confinement. Histograms of the nor-
malized y coordinate of the particle positions from experiments
[green histograms, (a),(b)] and lubrication-repulsion simulations
[red histograms, (c),(b)] for small (a),(c) and large (b),(d) gaps.
The bottom plate corresponds to y ¼ 0. Collectively these
histograms indicate strong layering with increasing confinement.
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for particles to flow over one another. Layering, however,
could also increase the minimum separation between
the particles making the contribution from short-ranged
repulsive forces smaller. To determine which mechanism
dominates, we compare the hydrodynamic and short-range
repulsion contributions in the lubrication-repulsion dynam-
ics simulation [Fig. 5(a)]. We find a comparable decrease in
the hydrodynamic and short-range repulsive stresses for
this regime of moderate confinement.
To determine whether the lubrication-repulsion dynam-

ics simulation is accurately assessing the hydrodynamic
stress, we compare it to that of the Stokesian dynamics
simulations by plotting the hydrodynamic viscosity versus
gap [Fig. 5(b)]. We find that the hydrodynamic interactions
from lubrication-repulsion dynamics show quantitative
agreement with the Stokesian dynamics simulations at
large gaps but show larger decreases under further confine-
ment, even though the Stokesian dynamics simulations also
show layering under confinement. This discrepancy in the
stresses calculated by the two simulation techniques sug-
gests that there might be a long-range contribution to the

hydrodynamic stress at small gaps that is neglected by the
lubrication-repulsion model. We also find a difference in
the microstructure formed under confinement in the two
simulation techniques. The Stokesian dynamics simula-
tions show layering but little to no alignment in the flow
direction (see Appendix A), which could also contribute to
the difference in the hydrodynamic viscosity at small gaps.

B. Buckled phase

As the monodispersed sample is confined further,
3 < h=2a < 6, we observe that the viscosity fluctuates

(b)

b

(a)

FIG. 4. Relating viscosity to the gap-dependent order param-
eter. (a) The order parameter as a function of gap from both
experiments and the lubrication-repulsion dynamics simulation.
(b) The normalized viscosity as a function of the order parameter
for the experiments and the lubrication-repulsion dynamics
simulation. The decrease in the viscosity is well correlated with
the increase in the order parameter with an R value of 0.8031.

(a)

b

(b)

FIG. 5. Force contributions to the total stress as determined
from the two simulation techniques. (a) The total (red), hydro-
dynamic (yellow), and short-ranged repulsion contributions
(pink) to the relative viscosity of the suspension as calculated
by the lubrication-repulsion dynamics simulation. The viscosities
are scaled by the total bulk viscosity in all cases. The inset shows
comparable decreases in the viscosities arising from short-range
repulsive and hydrodynamic interactions. (b) Comparison of the
hydrodynamic viscosity from the lubrication-repulsion dynamics
simulation, where a lubrication approximation is used between
particle pairs, and the full hydrodynamic viscosity from Stoke-
sian dynamics. Here, the viscosity is normalized by the sus-
pending fluid viscosity. Both simulations show similar bulk
viscosities and viscosity oscillations at low gaps. The lubrica-
tion-repulsion simulation shows up to a factor of 3 reduction in
viscosity for normalized gaps less than 10.
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with gap. These oscillations have a length scale equal to the
particle diameter (Figs. 2 and 5). Previous experimental
observations of confined suspensions under shear show that
when the gap is incommensurate with an integer number of
particle layers, the system forms a buckled phase under
shear [22], where the particle layers fold out of plane
[Fig. 6(a)]. Our experiment and simulation data suggest that
such phases may be responsible for the viscosity oscil-
lations. To test this hypothesis, we image the sheared
suspension structure over this range of gap. We find that
when the gap is incommensurate with an integer number
of layers, the particles form a buckled phase [22] and the
relative viscosity is higher [Fig. 6(b)]. The magnitude of
these oscillations is seen to increase with smaller gap.

The oscillations in the viscosity we see in the experi-
ments can be reproduced using the lubrication-repulsion
dynamics simulation [Fig. 5(a)]. In the simulations, however,
these oscillations have a much larger amplitude and less well
formed structure (Appendix A). Separating the short-range
repulsive and hydrodynamic contributions, we find that the
fluctuations in the viscosity arise from both forces, with
short-range repulsion playing a larger role at smaller
gaps [Fig. 5(a)]. Comparing with Stokesian dynamics
simulations [Fig. 5(b)], we find good agreement with the
amplitude and gap dependence of the oscillations. We
do, however, find more significant decrease in the hydro-
dynamic contribution to the viscosity in the lubrication-
repulsion model. Collectively, these data demonstrate that

(a)

(b)

b

FIG. 6. Buckled phase viscosity. (a) The shear geometry and a schematic of the three-dimensional microstructure of the buckled phase
and perfectly layered phase. The spheres of the same color indicate particles that move together with same velocity and displacement.
(b) The magnitude of the complex viscosity as a function of the gap. The images show the x-z cross section of the microstructure at the
indicated values of the gap.
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confinement-induced microstructure and geometric incom-
mensurability strongly affect the hydrodynamic and short-
range repulsive forces giving rise to the suspension viscosity.

C. Extreme confinement

Finally, at extremely small gaps (h=2a < 3), we find that
the viscosity amplitude sharply increases [Figs. 2, 5, and
6(b)]. A viscosity increase is also observed at the same
normalized gap for the lubrication-repulsion dynamics
simulations. However, the increase in the simulations is
much larger [Fig. 5(a)], which may be due to the even
smaller gaps reached in simulations. On separating the
hydrodynamic and the short-range repulsive contributions
to the stress, we find a small increase in the hydrodynamic
stress in the lubrication-repulsion simulations. This increase
is comparable to the increase seen in the Stokesian dynamics
simulations. Collectively, these data indicate that the large
increase in the viscosity at extreme confinement primarily
arises from the short-range repulsive forces.

IV. TUNING THE SUSPENSION RHEOLOGY
UNDER CONFINEMENT

The structural dependence of the hydrodynamic and short-
ranged repulsive stresses indicates that volume fraction and
polydispersity could be used as additional knobs for tuning
the suspension response under increasing confinement. For
example, decreasing the volume fraction results in a suspen-
sion that is significantly less layered under confinement.
Thus, such suspensions should exhibit a smaller reduction in
the viscosity with gap. To test this prediction, we compare the
viscosity versus gap measurements for suspensions with
volume fraction ϕ ¼ 0.38 and 0.52 [Fig. 7(a)]. We find that,
as anticipated, the lower volume fraction suspension shows
significantly less decrease in viscosity under confinement. At
these volume fractions the suspension microstructure never
forms full layers. As such, the viscosity oscillations arising
from the buckled phases are also absent (Appendix B). We
note that denser suspensions that are crystalline even in bulk
would be layered at all gaps. Thus, they are expected to show
little to no decrease in viscosity with moderate confinement.
We would, however, expect such systems to exhibit buckled
phases and the corresponding viscosity fluctuations. Finally,
in all caseswe expect to observe the sharp increase inviscosity
under extreme confinement.
Polydispersity can also be used to inhibit layer forma-

tion. Thus, we predict that the decrease of viscosity due
to confinement-induced ordering would diminish with
increasing polydispersity. To test this prediction we mea-
sure the relative viscosity versus normalized gap for
bidisperse suspensions with different degrees of polydis-
persity. The suspensions are composed of two different
particles with incommensurate diameters, 2 and 1.3 μm.
We control the extent to which the suspensions can layer by
changing the number ratio of the small to the big particles r.

For example, using r ¼ 1 we can completely suppress the
layering in the systems and we observe a constant viscosity
down to very small gaps [Fig. 7(b), green and red lines]. In
contrast, using r ¼ 3 we observe some layering in the
suspension and, hence, a small but significant decrease in
the viscosity is observed [Fig. 7(b), diamond symbols].
These experiments demonstrate that the suspension micro-
structure is a powerful tool that can be utilized to tune the
confined suspension viscosity.

V. DISCUSSION

A. Viscosity fluctuations arising
from buckled phase microstructure

The measured increase in the viscosity when the suspen-
sion forms a buckled phase contradicts the model put
forward previously by Cohen et al. [22]. This prior work
suggested that the amplitude of the shear stresses is propor-
tional to the shear-dependent osmotic pressure [65] in the
shear zone. Since the shear-dependent osmotic pressure must
balance the constant osmotic pressure in the reservoir, it was
predicted that the effective viscosity of the suspension must

(a)

b
b

(b)

FIG. 7. Tuning theviscosityunder confinement. (a)Thedecrease
in the viscosity under confinement for two different volume
fractions. (b) The viscosity of a bidisperse system at three different
number ratiosofsmall to largeparticles,r ¼ 0, 1,and3.Alsoshown
are the lubrication-repulsion simulation results for r ¼ 1.
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also be constant for all gaps. While we find that the viscosity
increase in the buckled structures observed in our experi-
ments is moderate, indicating the osmotic pressure may set
the overall scale of the viscosity, our measurements suggest
that the coupling between the viscosity and the osmotic
pressure is more complex.
More specifically, the complication arises from the fact

that details of the suspension structure can alter the normal
stresses generated by a given shear flow. For example,
when the suspension forms a buckled phase, a normal stress
in the gradient direction pushing a particle sitting below its
neighbors will be redirected laterally through the short-
ranged repulsion between the particles. Thus, the degree to
which forces in different directions are coupled may vary
substantially for different structures and requires further
investigation.
In principle, numerical simulations that impose a buckled

phase structure parametrized by the extent of buckling could
be used to fully elucidate the origin for the viscosity increase.
For example, such studies could be used to determine the
coupling between the reservoir osmotic pressure and the
shear stresses generated by different degrees of buckling. In
addition, for a given structure and flow, the hydrodynamic
and short-range repulsion contributions to the shear stresses
could be determined. Such a study would also allow for
distinguishing whether effective surface area between layers
or distance between layers dominates the increase in hydro-
dynamic contributions in the buckled phase.

B. Increase in viscosity under extreme confinement

At gaps h=2a < 3, the suspension viscosity increases
dramatically. The simulation data indicate that short-ranged
repulsion provides the dominant contribution to this
increase. Motivated by the formation of force chains in
granular systems, we track the increase in the number of
“bridges” that span the system between the two walls.
Here, a bridge refers to an uninterrupted chain of particles
whose interactions are dominated by short-ranged repulsive
forces. We use the simulation data from the lubrication-
repulsion dynamics simulations to plot the number of
system spanning bridges for the monodispersed system
versus normalized gap. We find that the number of bridges
increases sharply at a normalized gap of three. These results
indicate that while short-range repulsion forces contribute
at all gaps, the sharp increase in the viscosity at extreme
confinement arises from the increase in the bridges between
the upper and lower walls (Fig. 8).

C. Comparisons to atomic and granular systems

Many of the changes in the viscosity of a colloidal
suspension under confinement can be compared to those
observed in atomic and granular systems. In atomic
systems, for example, it has been shown that when water
is confined such that the gap size is comparable to a few
times that of the molecule, its viscosity increases by several

orders of magnitude [66,67]. The similar increase seen in
colloidal suspensions under extreme confinement is consis-
tent with the idea that formation of short load-bearing bridges
between the confining surfaces may be the underlying cause
of the viscosity increase in atomic fluids. This mechanism
also explains why the viscosity increase occurs only at very
small gaps: without friction or some other mechanism that
prevents lateral slipping between particles or atoms, it is
difficult to support long force chains between the plates.
Simulations and experiments in atomic systems have also

shown that extreme confinement can induce structural order-
ing that depends sensitively on the gap [68,69]. In particular,
it has been shown that incommensurability of the gap with
the atom size results in oscillations in the viscosity [70,71].
These viscosity oscillations closely resemble those seen in
colloidal suspensions when the gap is incommensurate with
an integer number of particle layers. Itwould be interesting to
determine whether structures similar to the observed colloi-
dal buckled phases also arise in atomic systems.
Monodispersed granular suspensions also display trends

similar to colloidal systems under confinement [25,27,61].
Granular suspensions show an increase in the viscosity at
gaps smaller than 3 particle diameters. While some papers
suggest that this increase is due to hydrodynamic inter-
actions between the particles and the boundaries [26],
others suggest that friction may play a role in this increase
in viscosity [27]. Our current results showing the larger
contribution from the short-range repulsive forces suggests
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FIG. 8. Bridge formation under confinement. Panels (a) and
(b) show an example of a bridge seen in the simulations at gaps of
3.5 and 2.5 particle diameters, respectively. (c) The number of
system spanning bridges as a function of gap. We find a sharp
increase in the number of bridges corresponding to the increased
viscosity at extreme confinement.
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that friction may be the dominant factor in the increase in
viscosity in granular suspensions.
At moderate concentrations (ϕ ¼ 0.2�0.4), simulations

show that the viscosity initially decreases when a granular
suspension is confined to gaps less than 15 particle
diameters before increasing when the gap is less than 3
particle diameters [26]. This decrease in the viscosity is
very similar to the decrease in the viscosity seen in colloidal
suspensions and could also be the result of the layering due
to the presence of boundaries.
At higher volume fractions (ϕ ¼ 0.58), granular suspen-

sions no longer show this decrease in the viscosity, and the
viscosity remains constant until the gap is smaller than ∼7
particle diameters. In light of our results, it may be the case
that the monodisperse granular suspension has already
ordered during confinement. For example, it has been shown
via simulations and experiments that granular systems layer
parallel to the wall under confinement [27,72]. Such order-
ing would rule out the decrease in viscosity due to the
layering mechanism that is observed in the present study.
Moreover, such ordering would still preserve the viscosity
oscillations for gaps below ∼7 particle diameters [27,61].
The results of our experiments also show similarities with

simulations of confined suspensions at higher Reynolds
number [72]. Those simulations show a similar decrease
and fluctuations in the viscosity even at volume fractions
as low as ϕ ¼ 0.3. They also demonstrate layering in the
suspension under confinement, and show an increase in
viscosity at gaps incommensurate with the particle diameter.
Such results hint that inertia could lead to additional
mechanisms that enhance layer formation in commensurate
gaps and give rise to oscillations in the viscosity.

VI. CONCLUSIONS

Our experiments and simulations show that the structures
that arise due to confinement play an essential role in
setting the balance of forces that determine the viscosity of
the suspension. For a monodispersed sample with high
volume fraction (ϕ ¼ 0.52), we find that the viscosity
decreases at moderate degrees of confinement because of
the layering that arises due to the presence of the walls. This
layering gives rise to comparable decreases in the hydro-
dynamic and short-ranged repulsive forces, both of which
contribute significantly to the viscosity. Further, when the
gap is less than 6 times the particle diameter, the formation
of a buckled structure increases the viscosity for gaps that
are incommensurate with particle layers. These structural
variations again give rise to comparable changes in the
hydrodynamic and short-ranged repulsive forces. Finally,
under extreme confinement, when h=2a < 3, the viscosity
sharply increases due to particle bridging between the
plates. This increase is dominated by the short-ranged
repulsion forces between the particles.
This complex relationship between the viscosity, micro-

structure, and confinement enables us to tune the

suspension rheology by altering the gap, volume fractions,
and polydispersity of the suspension. In addition, the
formation of anisotropic structures such as the buckled
phase, which is aligned along the shear direction, suggests
the suspension viscosity may be anisotropic. Finally, the
study we present here has only explored the effect of
confinement at intermediate Pe numbers. The effects of
confinement at very low Pe numbers (Brownian regime)
and very large Pe numbers (shear thickening regime)
remain open for future investigations.
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APPENDIX A: SIMULATION
MICROSTRUCTURE

We show here the structures formed in the shear
vorticity plane in the simulations at high volume fractions

(b)

(c) (d)

(a)

FIG. 9. The suspension microstructure in the shear vorticity
plane from simulations. Panels (a) and (b) show the structure
formed in the lubrication-repulsion simulations at gaps 3.5 and
3.9 particle diameters, respectively. Panels (c) and (d) show the
structure formed in the Stokesian dynamics simulations at gaps
3.5 and 4 particle diameters, respectively.
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(ϕ ¼ 0.52). Figures 9(a) and 9(b) show the microstructure
at gaps 3.5 and 3.9 particle diameters from the lubrication-
repulsion simulations. At incommensurate gaps, we see the
stripes characteristic of the buckled phase [Fig. 9(a)].
Comparing with Fig. 6(b), we see that the experimental
images are more periodic, which may be the result of larger
system size, Brownian motion, as well as smoother walls
in the experiments. Figures 9(c) and 9(d) show the micro-
structure at gaps 3.5 and 4 particle diameters from the
Stokesian dynamics simulations. We see layering during
confinement, but in contrast to the lubrication repulsion
simulations and experiments, the particles are not aligned
along the flow direction. At gaps incommensurate with the
particle diameter, the ordered domains indicative of layer-
ing formed at commensurate gaps are broken up. However,
there is no evidence of the formation of the stripes seen in
the buckled phase in the Stokesian dynamics simulations
[Fig. 9(d)]. These structural differences suggest that control
of boundary conditions along the vorticity direction may be

a key factor in simulating aligning dispersions as flow
alignment is impeded when the simulation cell dimensions
are incommensurate with an integer number of flow aligned
particles in the Stokesian dynamics simulations. The
difference in microstructure between the experiments and
the simulations very likely contributes to the quantitative
difference in the suspension viscosity [Figs. 2 and 5(b)].

APPENDIX B: LOW VOLUME FRACTION
SUSPENSIONS

We discuss here in more detail the rheological and
structural trends seen in suspension of low volume fraction
(ϕ ¼ 0.38). At this volume fraction, we expect the layering
to be decreased and no buckled structures to be formed. In
agreement with our expectations, the results of the experi-
ments show a smaller decrease in the viscosity [Fig. 10(a)
(inset)]. Moreover, we see no measurable variations in
the viscosity due to incommensurability of the gap with

(a)

b

b

b

(b)

(c) (d) (e) (f)

FIG. 10. Rheology and microstructure of a low volume fraction (ϕ ¼ 0.38) monodisperse suspension. (a) The experimentally
observed variations in the viscosity between gaps 2.5–4 particle diameters. We see no measurable oscillations due to incommen-
surability. The inset shows the viscosity variation over the full range of gaps. (b) The viscosity of the suspension measured by the
lubrication-repulsion simulations. Panels (c)–(f) show the microstructure from experiments (c),(d) and simulations (e),(f). Panels (c) and
(e) are at a gap of 3.5 particle diameters and panels (d) and (f) at a gap of 3.9 particle diameters. Collectively, the structural data
demonstrate the absence of layering and buckled structure in the sample.
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the particle diameter [Fig. 10(a)]. The microstructure also
displays less layering [Figs. 10(c) and 10(d)], and no
buckled phase is formed when the gap is incommensurate
with the particle diameter [Fig. 10(c)]. The lubrication-
repulsion dynamics is expected to be less accurate at
ϕ < 0.4. Nevertheless, we run the simulations at
ϕ ¼ 0.38. We observe a decrease in viscosity comparable
with that seen in experiments. However, fluctuations are
observed in the lubrication-repulsion simulations, even
though there is no indication of the formation of the
buckled phase [Fig. 10(e)].
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