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By combining confocal microscopy and stress assessment from local structural anisotropy, we directly
measure stresses in 3D quiescent colloidal liquids. Our noninvasive and nonperturbative method allows us
to measure forces ≲50 fN with a small and tunable probing volume, enabling us to resolve the stress
fluctuations arising from particle thermal motions. We use the Green-Kubo relation to relate these measured
stress fluctuations to the bulk Brownian viscosity at different volume fractions, comparing against
simulations and conventional rheometry measurements. We find that the Green-Kubo analysis gives
excellent agreement with these prior results, suggesting that similar methods could be applied to
investigations of local flow properties in many poorly understood far-from-equilibrium systems, including
suspensions that are glassy, strongly sheared, or highly confined.
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All quiescent thermal systems may seem static macro-
scopically, but microscopically they fluctuate strongly.
By observing the system’s response to these thermal
fluctuations, a material’s linear transport coefficients can
be predicted using the Green-Kubo relation [1–4]. This
foundational relation—a central achievement of non-
equilibrium statistical mechanics—has enabled numerous
diverse theoretical calculations ranging from electrical and
magnetic susceptibilities in quantum systems [5,6] to
thermal conductivities in nanotubes [7–10]. In particular,
it has been widely used to theoretically determine the
viscosities in bulk [11], confined [12,13], supercooled
[14,15], and quantum [16] liquids, where external load
is problematic or heterogeneities play a crucial role.
Unfortunately, these applications have remained strictly
theoretical due to the difficulties in experimentally observ-
ing fluctuations in atomic systems, which are too
rapid (∼ps) and weak (∼μN) to mechanically resolve in
experiments.
Here, by using high-speed confocal microscopy in

conjunction with stress assessment from local structural
anisotropy (SALSA) [17], we directly measure the stress
fluctuations in nearly hard-sphere colloidal liquids.
Colloidal suspensions are comprised of particles that are
small enough to demonstrate Brownian motions, while
large enough to be optically imaged, providing length and
time scales that are associated with system relaxation [18].
To measure a suspension’s stress fluctuations, we use a
confocal microscope to image the 3D microstructure of
the sample, then use SALSA to determine its Brownian
stress arising from interparticle thermal collisions. Since
SALSA is image based, noninvasive, nonperturbative, and
able to measure the suspension stress with a tunable
probing volume, it can resolve the weak stress fluctua-
tions that are usually averaged out in conventional bulk

measurements due to the requisite large probing volume.
Such measurements allow for using the Green-Kubo
relation to determine the suspension viscosity.
The suspension samples are comprised of silica

spheres with a radius a ¼ 490 nm in a water-glycerine
mixture that has a matched refractive index and viscosity
η0 ¼ 60 mPa s. We add 1.25 mg=ml of fluorescein sodium
salt to the solvent to shorten screening length (≤10 nm) and
obtain nearly hard-sphere interactions. The added fluores-
cein also makes the solvent fluorescent, so the solvent
appears bright and the particles appear dark. We then image
the particle configuration using a high-speed confocal
microscope with a hyperfine scanner that maximizes the
stability in the vertical (z-axis) scanning position [sche-
matic in Fig. 1(a)]. To ensure that the suspension structure
remains homogenous throughout the experiment, we image
the sample within a minute after the sample cell
is made. We capture 216 frames per second and acquire
stacks of 100 images within 0.5 s ∼ 0.02τB, where τB ¼
6πa3η0=kBT is the self-diffusion time of the sample.
By implementing the previously developed SALSA

method [17], we determine the stress in our 3D suspen-
sions. SALSA uses the featured particle positions to
calculate the local structural anisotropy or fabric tensor
ψα
ijðΔÞ ¼

P
β∈nnr̂

αβ
i r̂αβj of particle α, where nn is the set of

colliding neighbors that lie within a distance 2aþ Δ from
particle α (Δ ¼ 106 nm in the current Letter), i, j are
spatial indices, and r̂ij is the unit vector between particles
[see Fig. 1(b) and Supplemental Material [19]]. Scaling the
ensemble-averaged ψα

ijðΔÞ by Δ enables us to estimate the
probability of thermal collisions between particles. Con-
sequently, the instantaneous Brownian stress of the sample
can be approximated: σijðV;ΔÞ ¼ ðkBT=VÞða=ΔÞ×P

α∈Vψ
α
ijðΔÞ þ nkBTδij, where V is the averaging window
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volume, kBT is thermal energy, n is number density, and δij
is Kronecker delta function. Here, nkBT is simply the ideal
gas term.
The typical volume of our probed region V ¼ 61 × 15 ×

12 μm3 ∼ 10 pL contains approximately 6000 particles at a
volume fraction ϕ ∼ 0.27. This small volume ensures that
the stress fluctuations are not suppressed by the volume
averaging, ∝ 1=V, while preserving bulk behavior. We plot

the instantaneous stress σxz and σxy in Fig. 1(b), where ẑ is
the gravitational axis and x̂ and ŷ are horizontal. In contrast
to a flat line at zero level anticipated in a macroscopic
measurement, we find that both σxz and σxy fluctuate up to
�0.5 mPa. We note that the force fluctuations correspond-
ing to these stresses are less than 50 fN, which are difficult
to resolve using mechanical methods.
We calculate the time-time autocorrelation function

hσijðtþΔtÞσijðtÞi for the stress components σxz and σxy,
and show the correlation decay in a log-linear plot, see
Fig. 2(a). Despite the slight sedimentation due to the
density mismatch between the particle and solvent,
both autocorrelation functions decay in the same fashion
indicating an isotropic viscosity of the sample (see
Supplemental Material [19]). We further examine the
cross-correlation hσxzðtþ ΔtÞσxyðtÞi and find it negligibly
small, which is consistent with the system symmetry. While
the exact function form of the autocorrelation decay cannot
be determined from the current data due to the limited
measurement time span, we use an exponential decay
(∼e−Δt=τ) to quantify the correlation time. In doing this,
we find that the correlation time τ varies weakly with the
suspension volume fraction ϕ [see Fig. 2(b)]. We compare
our observed trend with previous simulations of short-time
diffusivity Dss, where a2=Dss roughly sets the relaxation
time scale of the system [20,35]. In simulations,Dss decays
approximately as Dss ∼D0ð1 − bϕÞ [red line, Fig. 2(b)],
with b on the order of 1.5 at intermediate volume fractions.
Here, we find a weaker trend b ∼ 0.60� 0.23 (blue dashed
line) indicating either our measurements are not sufficiently

0 10 20

0.01

0.1

1

Time t s

S
tr

es
s

co
rr

el
at

io
n xz xz

xy xy

xz xy

Experiment

ASD Simulation

(a) (b)

P
-1

100 1000 10 000
0.01

0.1

1

10

100

Box volume VB Vp

V
ar

ia
nc

e
C

ij
m

P
a2

100 1000 10 0000

30

60

90

Box volume VB Vp

V
is

co
si

ty
P

a.
s

Probing volume (V/Vp)

Probing volume (V/Vp)

  =50.5 mPa.s B

Dss~D0(1-0.60 )

0

1

2

3

0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

Volume fraction

C
or

re
la

tio
n

tim
e

s

0

2

C
or

re
la

tio
n

tim
e

s
D

0 /D
ss

(c)

FIG. 2. (a) Time-time autocorrelation functions of σxz (orange) and σxy (blue) are calculated from the time series of stress. The
green line shows an exponential fit to the data to extract the time scale of the stress autocorrelation functions. The cross-correlation
hσxzðtþ ΔtÞσxyðtÞi (gray) is consistent with zero. showing low coupling between components. For clarity, the autocorrelation is
normalized by its corresponding fluctuation’s variance, and the cross-correlation is normalized by the mean variance of all
autocorrelations. (b) The correlation time τ of the stress fluctuation varies weakly with the volume fraction ϕ, a trend that is
consistent with the variation of the inverse self-diffusivityD0=DssðϕÞ found in accelerated Stokesian dynamics (ASD) simulations [35].
Here, D0 is the diffusivity in the ultradilute limit and a2=Dss roughly determines the relaxation time-scale of the suspension. (c) Mean
variance, Cij, of all shear stress components is plotted versus the normalized probing volume V=Vp, where Vp is particle volume. The
gray line denotes an inverse proportionality between Cij. The inset shows that the measured viscosity η ≈ 50.5 mPa s is roughly constant
when V=Vp ≥ 200 and starts to decay slightly at smaller probing volumes. We set the measurement window V ¼ 61 × 15 × 12 μm3,
V=Vp ∼ 22280 (orange line) throughout all measurements.
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FIG. 1. (a) Schematic of the experiment setup and axis. The
suspension sample is hermetically sealed in a sample cell, and
placed on a high-speed confocal microscope to image its micro-
structure. The measurement window (dashed box) is ∼5 μm
above the coverslip, avoiding boundary effects. (b) The featured
particle positions are used to calculate the stress using SALSA.
The selected particle’s (orange) local structural anisotropy is
calculated based on the configuration of its colliding neighbors
(blue) that lie within a thin shell Δ ≈ 106 nm (green). This
process is done for each snapshot giving the instantaneous
Brownian stresses σxz (orange line) and σxy (blue line) fluctuating
within ∼� 0.5 mPa.
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precise to determine b accurately or that the functional form
changes at volume fractions approaching close-packing.
With the measured stress fluctuations, we can directly

calculate the shear viscosity of our sample via the Green-
Kubo formula ηB ¼hðV=kBTÞ

R hσijðtþΔtÞσijðtÞidΔtii≠j,
where ηB is the Brownian contribution to the total shear
viscosity ηtot. We note that to calculate the final viscosity, an
additional factor of Δ=Δ0 is included in the stress corre-
lation calculation. This factor accounts for the shell geo-
metry’s contribution to the autocorrelation time average
[36]. Since our suspension systems are nearly hard sphere,
we anticipate that the stresses are weakly correlated in
space, and thus the sample viscosity is roughly independent
of probe window size. To verify this, we change our
probing (averaging) volume V, and investigate how the
stress fluctuations vary. In Fig. 2(c), we plot the mean
variance of shear stress Cij ¼ hσijðtÞσijðtÞit;i≠j as a func-
tion of V=Vp, where Vp is the particle volume ð4=3Þπa3.
We find that Cij is inversely proportional to V=Vp when
V=Vp ≥ 200, corresponding to a cubic volume that is
approximately six particles across. This inverse propor-
tionality and constant viscosity shown in the inset of
Fig. 2(c) are consistent with the Green-Kubo formula.
When V=Vp ≤ 200, we find that the viscosity slightly
deviates from its bulk value. The viscosity reduction is
around 20% of the mean for the smallest probing volume
explored—a three-particle-wide cube. While this reduction
is reminiscent of the system-size-dependent viscosity
associated with long-ranged stress correlations in atomic
simulations [37–43], in our nearly hard-sphere liquid
system we do not anticipate such long-ranged correlations
that lead to nonlocal viscosities. Instead, at small volumes,
the stress fluctuations are strongly influenced by changes
in particle number as particles pass into and out of the
constrained field of view.
To compare our results with macroscopic flow measure-

ments and simulations, we use the measured stress auto-
correlation in conjunction with the Green-Kubo relation to
determine the Brownian viscosity ηB of suspensions at eight
different volume fractions 0.12 ≤ ϕ ≤ 0.45 (see Fig. 3). We
determine the shell geometry factor Δ0 ∼ 100 nm by fitting
the data point at ϕ ¼ 0.28 to the ASD simulations. The
resulting viscosities (red circles) show excellent agreement
with previous hydrodynamic Stokesian simulations (blue
squares) [35] at all volume fractions. To further confirm the
accuracy of our SALSA stress measurement, we also use
Brownian dynamics simulations to generate sets of particle
configurations matching the experimental parameters (e.g.,
particle size, solvent viscosity, and temperature), and
compare the stresses calculated from actual virials FijXij

(purple diamonds) with those calculated on the same
data set with SALSA (green diamonds) [44]. Both results
again show a quantitative agreement with the experimental
measurements. Finally, the measured Brownian viscosities
are compared with conventional mechanical measurements

by subtracting the hydrodynamic contribution ηH from
the total viscosity ηtot determined using rheometry (purple
crosses) [24,45]. The rheology data points (colloidal
PMMA and silica systems) are obtained from previous
experiments [45] and the hydrodynamic contribution is
calculated from previous analytical approximation for the
high frequency viscosity [45–48]. We find good agreement
between the viscosities determined by our stress fluctuation
measurements and conventional rheometry at all volume
fractions explored.
In contrast to conventional mechanical measurements,

which can only measure the flow-gradient stress and the
difference between normal stresses, SALSA measures all
stress components simultaneously. In Fig. 4(a) we report
the pressure of the suspension at the eight volume fractions
explored in Fig. 3. We find that the measured osmotic
pressure arising from Brownian collisions (red disks) is
well described by the Carnahan-Starling equation of state
(gray line) [49]. In addition, we find that both the shear
(ηB, light red points) and bulk (ηbulkB , dark red points)
viscosities roughly exhibit Π2 scaling (dashed black line),
as shown in Fig. 4(b). While the underlying mechanism of
such an empirical scaling remains an open question, we can

FIG. 3. Relative Brownian viscosity ηB=η0 calculated using the
Green-Kubo relation (red circles) is plotted versus volume
fraction ϕ, where η0 is the solvent viscosity. The error bars
denote the standard errors over 14 runs of measurements. The
experimental results are quantitatively consistent with ASD
simulations (blue squares) [35]. Furthermore, we find that the
measured Brownian viscosity of our suspension is also consistent
with our Brownian dynamics simulation results determined with
direct stress calculation F⃗ x⃗ (purple diamonds) and the SALSA
method (green diamonds). Finally, we find our results are in
excellent agreement with rheometry measurements (purple
crosses) [45]. In particular, we subtract the hydrodynamic
contribution ηH from the total viscosity ηtot measured using
bulk rheometry to determine the Brownian component, where
ηH is obtained from analytical calculations reported in previous
work [45–48].
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qualitatively understand this scaling for the bulk viscosity
using a dimensional analysis. Since the correlations in the
Green-Kubo formula decay approximately exponentially in
time, and the relaxation time τ does not increases signifi-
cantly with increasing pressure over the range measured,
we have

ηbulkB ∼
Z

∞

0

h½Πðtþ ΔtÞ − Π̄�½ΠðtÞ − Π̄�idΔt

∼
Z

∞

0

CΠe−Δt=τdΔt ∼ hΠ2i − hΠi2 ð1Þ

where CΠ is the variance of pressure [51,52].
While many previous studies have made analogies

between the transport phenomena of colloidal systems
and simple liquids [20,24,53,54], we find that the observed
Π2 scaling is actually absent in atomic systems.
Specifically, the atomic viscosity [blue curve in
Fig. 4(b)] exhibits a similar scaling behavior, but only at
high pressures corresponding to large ϕ. At low pressures,
the viscosity trend deviates from the Π2 scaling. We
conjecture that this deviation is associated with the kinetic
contribution to the viscosity [4,32], which is associated
with atom velocity, insensitive to Π, and dominates in the
dilute limit (see Supplemental Material [19]). Collectively,
our findings, which are made possible by SALSA, suggest
that even the Brownian contribution to the colloidal
viscosity can have a distinct transport mechanism than
that in simple liquids.
In conclusion, we measure the stress fluctuation in

colloidal liquids with SALSA, and use the well-known
Green-Kubo relation to determine the viscosities of quies-
cent suspensions [1,2]. Our measurements essentially
show that “as far as linear responses are concerned, the

admittance is reduced to the calculation of time-fluctuations
in equilibrium” [1]. Previous pioneering experiments were
able to combine the Green-Kubo relation with numerical
simulations to extract the viscosity of a 2D dusty plasma
[55]. These measurements, however, relied on assumptions
for the interparticle potentials and ignored power-law decays
in the stress correlation characteristic of 2D systems, which
are known to lead to diverging integrals [56–58]. The
analysis presented here avoids many of these complications
and opens the door to further investigations of stress
distributions in liquids under shear, confinement, and at
high densities where the suspension becomes glassy
[59–61]. In such situations SALSA is still applicable since
the solvent remains in equilibrium. More importantly, since
the SALSA measurement is noninvasive, it also allows for
probing the mechanical heterogeneity in a 3D colloidal glass
[62–68], in which we can perform a time average for
particle-scale stress calculation. Measuring the temporal
and spatial stress fluctuations in such a system will shed
light on the generalization of the Green-Kubo relation in far-
from-equilibrium systems and elucidate the mechanisms that
underlie the flow behaviors of disordered systems.
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