
royalsocietypublishing.org/journal/rsif
Research
Cite this article: Lee ED, Esposito E, Cohen I.

2019 Audio cues enhance mirroring of arm

motion when visual cues are scarce. J. R. Soc.

Interface 16: 20180903.

http://dx.doi.org/10.1098/rsif.2018.0903
Received: 1 December 2018

Accepted: 16 April 2019
Subject Category:
Life Sciences – Physics interface

Subject Areas:
computational biology, biomechanics

Keywords:
virtual reality, coordination, motion capture,

mirroring, statistical learning
Author for correspondence:
Edward D. Lee

e-mail: edl56@cornell.edu
Electronic supplementary material is available

online at https://dx.doi.org/10.6084/m9.

figshare.c.4486775.
& 2019 The Author(s) Published by the Royal Society. All rights reserved.
Audio cues enhance mirroring of arm
motion when visual cues are scarce

Edward D. Lee, Edward Esposito and Itai Cohen

Department of Physics, Cornell University, 142 Sciences Drive, Ithaca, NY 14853, USA

EDL, 0000-0003-2075-6342

Swing in a crew boat, a good jazz riff, a fluid conversation: these tasks require

extracting sensory information about how others flow in order to mimic and

respond. To determine what factors influence coordination, we build an

environment to manipulate incoming sensory information by combining

virtual reality and motion capture. We study how people mirror the motion

of a human avatar’s arm as we occlude the avatar. We efficiently map the

transition from successful mirroring to failure using Gaussian process

regression. Then, we determine the change in behaviour when we introduce

audio cues with a frequency proportional to the speed of the avatar’s hand

or train individuals with a practice session. Remarkably, audio cues extend

the range of successful mirroring to regimes where visual information

is sparse. Such cues could facilitate joint coordination when navigating visu-

ally occluded environments, improve reaction speed in human–computer

interfaces or measure altered physiological states and disease.
1. Introduction
Successful coordination of human motion in a group is crucial for many tasks

including dance, team sports or music ensembles [1–4]. In all these cases, it is

essential that the individual extract information from the local environment

[5,6] to maintain coordination with others. When the input to a sensory channel

is disrupted systematically, however, how do individuals compensate for such

disruption? In the context of sensorimotor integration for reaching tasks, this

question has been well studied [7–9]. Here, we study the transition from coor-

dinated to uncoordinated behaviour using an experimental apparatus that

manipulates the visual and auditory fields, measures the dynamic motions of

individuals, and quickly maps out performance across large regions of par-

ameter space. To determine the relationship between available visual

information and a subject’s ability to mirror accurately, we asked 35 subjects

to mirror the hand motions of a pre-recorded avatar while we changed the

rate with and duration during which the avatar was visible. Next, we measured

changes in performance when the subjects were given audio cues that mapped

velocity of motion to frequency, practice training rounds or both training and

audio cues. Using these data, we find that audio enhances performance at

fast time scales while the combination of both audio and training affects the

dynamics of coordination performance in a characteristic way that may be

detectable in other experiments.

Pitch-based auditory cues provide an informative, intuitive and commonly

used approach for representing kinematic and kinetic measurements in human

motion [10–12]. When used as feedback, audio cues can enhance performance

at motor tasks across a variety of contexts including learning a cyclic motion

[10,13,14] and interpersonal coordination [2,15,16]—more generally perceptual

coupling including other sensory modalities like vision and touch have been

shown to enhance interpersonal coordination (see [17] for a review). In the

case where subjects are trying to learn a new motion, evidence suggests that

feedback based on the target motion is more effective than that based on the

subject’s own motion [13,15]. Along these lines, we represent the target hand

motion of the avatar that the subject is mirroring using a simple proportional
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Figure 1. (a) Experimental set-up showing a subject wearing virtual reality goggles and the motion capture suit along with the subject’s field of view when the
avatar is invisible and visible. The green bar indicates current performance. (b) Dynamic time warping (DTW) aligns the measured velocities (blue) along the y- and
z-axes. After DTW (orange), we identify runs of successful tracking (grey) and the fraction of the trial that these regions span is the estimated performance p̂ . DTW,
as expected, reduces velocity error (normalized by standard deviation) as shown on right and returns time delays with distribution on the bottom right.
(c) Parameter space diagram. The four corners represent the extremes of the parameter space. The visible fraction f determines the fraction of time, akin to
the duty cycle, during which the avatar is visible. Where the visual representation of the avatar blinks on and off quickly, we call stop motion animation.
(d ) Rescaled performance landscape h~p(t, f )ie�¼0:55 s aggregated across all subjects in the Train þ Audio condition (M ¼ 15). One-dimensional cuts, outlined
by red rectangles, are shown on the sides with predicted uncertainties. Error bars are one standard standard over the rescaled landscapes. Solid blue line traces the
relation in equation (2.1) fit the level curve in performance given by h~pi ¼ 1=2. Dashed blue lines indicate fits to rescaled landscapes one standard deviation
above and below the shown mean landscape. (Online version in colour.)
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pitch mapping based on speed. Given that these auditory

cues provide complementary auditory information along

with a visual of the avatar, we expect that performance at

mirroring the avatar will be enhanced.

Beyond perceptual coupling, higher-level planning pro-

cesses may play a role in learning how to mimic others’

motions [18], an aspect that we study by training some of the

participants in practice trials. In various studies of interperso-

nal coordination, there is evidence that anticipatory motor

activation might help individuals respond to the motion of

others [19,20]. One experiment showed that even imagining

the motion of another subject prior to motion helped to syn-

chronize behaviour [4]. Here, we explore how the provision

of auditory cues might compare to the benefits of a training

round where individuals have a chance to practice mirroring

an avatar. We run two variations of the conditions where

in one, participants do not have the opportunity to practice

the task and in the other they do. This variation allows us to

measure interplay between audio cues and practice with the

task. In some experiments exploring the effect of audio cues,

similar kinds of practice rounds precede measurement [13],
whereas in others subjects only witness the task before

immediately proceeding to performance [14]. We would

expect that performance at the mirroring task would improve

when subjects receive either training or audio cues in the

absence of reliable visual cues, a prediction that would be

consistent with other results in the literature [13,14,21].

In our experiments, subjects wore virtual reality goggles

and a motion capture suit, stood face-to-face with an avatar

that played a pre-recorded sequence of aperiodic motions gen-

erated by an experimenter and were instructed to mirror the

motion of the avatar’s hand as shown in figure 1a. Each exper-

imental sequence consisted of 16 sequential 30 s trials with

varying difficulty. To control the difficulty, we took windows

of duration 1/2 s � t � 2 s and only showed the avatar for a

contiguous visible fraction 0.1 � f � 1 of the window ( f is ana-

logous to the duty cycle). In the first and last trials, the avatar

was visible at all times, so f ¼ 1. After a 16 trial sequence

with a randomly chosen hand, the subjects repeated another

sequence with the other hand for a different set of motions.

We assess how well subjects mirrored the motion of the

avatar by comparing the two-dimensional velocity trajectory
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of the subject vs(t) with the avatar’s va(t). We show an example

for a single 30 s trial in figure 1b, where we measure the velocity

of the subject’s hand (solid blue line) in the mirror plane separ-

ating the subject from the avatar. The plane corresponds to the

y and z axes as defined in figure 1a.1 By inspecting the coarse

features of the trajectories, we observe that the subject captures

much of the lower frequency motions of the avatar but only

after a varying temporal delay. To account for these delays,

we use a standard algorithm for aligning two trajectories

with local temporal modulation called dynamic time warping

(DTW) [22–24]. We regularize the alignment problem so that

solutions where the subject is more than 1/2 s ahead or 3/2 s

behind are penalized to avoid pathologies that can arise from

periodic motion (electronic supplementary material, section

S3). We show an example of the time-warped velocity trajec-

tories (orange lines) in figure 1b. After DTW, the velocity

difference normalized by the typical size of the velocity fluctu-

ations of the avatar, sa, is substantially narrower than the

unaligned distribution. This narrowing indicates that account-

ing for temporal delays e (black line in figure 1b) substantially

improves feature matching between the curves. Since close mir-

roring corresponds to minimal delay, we use the distribution of

delays found from aligning the curves as a measure of how

well subjects mirrored the avatar; results are similar if we

also consider the direction of the velocity vector (electronic

supplementary material, section S4).

After alignment with DTW, we summarize mirroring per-

formance with the estimated fraction of time that a subject is

able to stay within a time threshold e* given the window dur-

ation t and visible fraction f, p̂(t, f ; e�), which can only vary

from 0 to 1. When the subject is consistently within a time

delay of e* (as indicated by the shaded regions in figure

1b), the estimated performance measure p̂ � 1. With a short

threshold e*, high performing subjects must mirror the

avatar very closely with few deviations in both timing and

velocity—we find that dissimilar trajectories lead to strong

temporal variability with DTW. On the other hand with

large e*, slower reaction times and bigger corrections will

not affect the value of the performance. Thus, we vary e* to

probe variation in how closely subjects mirror the avatar.

Given a particular value of the time threshold e*, we use

Gaussian process regression to model a single subject’s perform-

ance landscape using the 16 trials as training data to interpolate

the unmeasured points [25,26]. These 16 data points represent

a sparse sample of 160 discretized grid points. During an

experiment, we chose these points by updating a Gaussian pro-

cess model on previous trials and selecting points of maximum

predicted uncertainty to explore quickly the performance land-

scape. After the experiments, we combined all subjects into

another multi-subject Gaussian process that captures subject-

specific variation and shared structure; this model agrees closely

with the data. Checking with a leave-one-out cross validation

procedure, we find that the multi-subject model works well

as measured by the strong correlation of the prediction with

the test point (r ¼ 0.95) across all experiments (electronic

supplementary material, sections S5 and S6).
2. Results
Looking across subjects, we find that performance varies with

both visibility parameters. To show this trend, we combine

performance landscapes across subjects after normalizing
them to be centred about the same midpoint of performance

(electronic supplementary material, section S6). We show an

example for e* ¼ 0.55 s—a few times the fastest motor response

time for humans [27]—in figure 1c. At f ¼ 1, the avatar is

always visible and subject performance is the highest. As

avatar visibility is reduced by decreasing the fraction visible

f, we observe poorer performance. We also tend to observe

better performance at shorter window intervals t. The vari-

ation with t and f shows systematic trends in performance

across subjects in this mirroring task.

We characterize the typical form of the transition between

high and low performance by inspecting the level contours of

the aggregated performance landscape in detail in figure 1d.

A simple parametrization for the level contours is the

nonlinear, inverse relation

f ¼ a� b
t

, (2:1)

where a and b are constants. This form captures the fact that

for large t performance must become a linear function of

f—because performance becomes an average between long

visible and invisible windows—and captures the intuition

that as t decreases subjects do better because the rapid, inter-

mittent views simulate stop motion animation. Fitting to the

level contour ~p ¼ 1=2 on the aggregated landscape, we find

that nearly all the landscapes we consider are well captured

by equation (2.1) and better than by a linear relation between

f and t. The results of the best-fit parameters are shown on

the landscape in figure 1 (blue line, electronic supplementary

material, section S7). Thus, the shape of the transition region

shows that faster windows typically increase the range of f
where good performance is accessible across subjects.

To determine if audio cues can affect performance, we

introduce the Audio experimental condition where subjects

hear a tone whose frequency increases with the speed of the

avatar’s hand (Material and methods). Though the tone does

not provide directional information, it can be used to deduce

when the avatar is making long sweeping motions or changing

directions. We compare Audio with the Train condition, where

subjects first undergo a 5 min practice version of the exper-

iment. Finally, we combine these two changes in the Train þ
Audio condition in which subjects are reminded to use and

coached on how to use the audio signals. This schema gives

four different experimental conditions with N subjects and M
unique subject and hand combinations: Visual Only (N ¼
10, M ¼ 17), Audio (N ¼ 10, M ¼ 10), Train (N ¼ 7, M ¼ 13)

and Train þ Audio (N ¼ 8, M ¼ 15).2

The presence of audio and training enhances average per-

formance taken over the predicted performance landscapes

across subjects kp l (e*). Since this measure depends on e*, we

lower e* to assess how well subjects track the motion of the

avatar at shorter time scales. We expect to find that the points

converge at large and very small e* corresponding to the

regimes of generous time delay where subjects do equally

well and the limits of human reaction time where subjects per-

form equally poorly, respectively. Across nearly the entire

range shown, where e* varies from 0.1 s to 1 s, we find large

improvement from the Visual Only to all other conditions as

shown in figure 2. When comparing the other conditions

with each other in the intermediate regime (circled regions),

we observe significant differences in the mean performance

of up to approximately 25% with the highest performance

consistently in the Train þ Audio condition. Interestingly,
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at e* � 1/2 s the order of the mean performance of the Train

and Audio conditions reverses suggesting that audio cues

enhance mean performance more at shorter time scales. This

result is consistent with studies showing that human reaction

times to audio cues are faster than reactions to visual cues

[27], as if effects of training were visually mediated or if train-

ing engaged higher-level anticipatory motor responses acting

at slower time scales [19,20]. Collectively, these data demon-

strate that for time scales spanning up to four times the

human motor response time, from 200 to 800 ms, there is

notable variation in performance depending on whether or

not audio cues and training are provided.

To gain insight into what distinguishes good performers

across conditions, we investigate the dynamics of how individ-

uals mirror the avatar. We inspect runs of successful mirroring

that are indicated by the shaded regions in figure 1b. Each of

these runs has a duration t. When subjects are able to mirror

the avatar closely, they show two kinds of dynamics: either

long runs of close mirroring or a dearth of immediate

failures (electronic supplementary material, section S8). We

map where these behaviours appear in the parameter space

given the condition of high performance p̂ � 1=2 (figure 3).

We plot in blue where at least one high-performance trial

appears on the performance landscape for the Train þ Audio

condition. We plot in red where at least one high-performance

trial appears in the Audio or Train conditions. Where blue and

red overlap, we colour the grid grey. For this comparison, we

ignore the Visual Only condition where average performance

is clearly poor. At e* ¼ 0.7 s, we inspect the region in the

bottom right corner where visual gaps are the largest. To
identify this region, we draw a line with the form of equation

(2.1) for which it is significantly more probable to find a

high-performance trial from Train þ Audio (p ¼ 0.18+0.07)

than from Train or Audio (p ¼ 0.07+0.04) as given by prob-

abilities estimated with the Jeffreys prior and 90% confidence

intervals. As we decrease e* to 1/2 s, this region is still

significantly dominated by Train þ Audio high-performance

trials. This effect is no longer significant once e* ¼ 0.4 s,

where high-performance trials are rare across all conditions.

This asymmetry in the distribution across parameter space

spanned by high-performance trials shows that for a limited

range of e* some subjects in the Train þ Audio condition

are able to maintain stable mirroring under more difficult

scenarios than subjects from the other experimental conditions.
3. Discussion
How might the few high performers in Train þ Audio that do

well across the extended parameter range be doing better? One

explanation is that they reflect natural variation in the popu-

lation and are affected by neither training nor audio cues [3].

Although this is a possibility we could only rule out completely

by testing the same subjects de novo under multiple conditions,

the significant increase in typical performance over many sub-

jects implies that our experimental conditions are changing

behaviour. Thus, these dynamic signatures provide evidence

that the highest performing individuals are better at learning

to use information from the audio cues to mirror the avatar,

enabling them to perform well in regions of parameter space
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inaccessible to low performers. Similar examples of high per-

formers have been identified in a number of experiments

involving individuals mirroring the behaviour of another sub-

ject between a leader and a follower and in joint coordination

without a designated leader [21,28,29]. The enhanced stability

of mirroring runs that we observe is consistent with studies

showing that short training sessions reduce error rates and

temporal variability in motor tasks [16]. We find that the

observed dynamics have signature distributions of temporal

variation that have not been explored in other experiments

though studies have shown that dancers show stronger coher-

ence when following new motions versus non-dancers over a

range of time scales [28]. Our experiments also reveal that

high performance is facilitated by audio cues, consistent with

prior work showing that auditory information enhanced

entrainment [30] as well as a performance at joint coordination

between individuals conducting complementary actions

[15,31]. In the context of these previous studies, our results

suggest that people can be trained to use audio cues to perform

coordination tasks in regimes where visual cues are sparse.

Our results show that even simple low-dimensional, scalar

representations of three-dimensional motion using pitch can

enhance the ability to mirror. Similarly, one experiment

showed that sonification of a cyclic target motion along with

sonification of the subject’s own motion could have a beneficial

effect on learning greater than natural sounds of motion [14].

Other experiments likewise support the observation that

auditory cues can enhance the learning of motor tasks [15].

Furthermore, pitch information has been found to substitute

for missing visual information in motor perception, consistent
with our finding of enhanced performance [32]. Interestingly,

subjects in another experiment responding freely to music

showed no association between pitch and speed of hand in

one experiment, but our results show that a pitch-to-speed

mapping can help when subjects are instructed to use such a

mapping. Indeed, humans are adept at recognizing abstracted

motion in various representations through both visual and

auditory modalities [12,33] (see [12] for an overview). Flexi-

bility in how human motion can be encoded suggests that

our approach may be just one way of generating helpful

auditory cues for mirroring tasks [12,34]. More broadly, fre-

quency coding of motion is a commonly used approach

for representing kinematic and motion values in human

experiments [11]. In contrast with experiments using multi-

dimensional encoding of motion [12,15], we give a simple

representation only mapping the speed of the avatar’s hand

to the frequency of a pure tone such that faster speed

corresponds to a higher frequency.

We find that overall performances in the Audio and Train

conditions are quite similar despite small but significant differ-

ences in the time scales at which performance is improved. One

explanation for this difference is that responses to visual stimuli

are slower than to auditory stimuli as measured by reaction

times [27], assuming that performance in the Train condition

is visually mediated. Indeed, many subjects in the Visual

Only condition had a difficult time responding to changes in

the direction of the avatar’s hand, showing considerable latency

that lessened with the provision of auditory cues. Another poss-

ible explanation for the difference between Audio and Train is

that training engages higher-level cognitive processes that act

at slower time scales. Subjects in the Train condition had

verbal reinforcement and a brief conversation to talk through

the task with the experimenter, perhaps engaging higher-level

cognitive functions for motor planning and social context

[19,20,35]. Furthermore, familiarity with a motor task can

improve performance [36–38]. We note that the presence of

longer time scales over which subjects are able to mirror the

avatar well in the Train condition compared to the Visual

Only condition suggests that subjects are engaging cognitive

processes with commensurate time scales going beyond

visual reaction times. When we additionally include audio in

the Train þ Audio condition, stable trajectories appear over

many seconds and many changes in direction, posing an inter-

esting question: in which aspects is time-consuming training

substitutable with intuitive perceptual cues?

Our study is just one example of how virtual reality tech-

nology combined with a set of statistical learning tools can

advance the study of human behaviour [39]. An analogous

toolkit has been used in cognitive neuroscience where control

over the sensory apparatus in model systems has led to signifi-

cant advances in the understanding of cognitive mechanisms

[40–42]. To adapt this approach for human subjects, we used

learning techniques to cover quickly a large parameter range

across four different conditions over an order of magnitude

in visual duration. Similar expansive experiments for mapping

multiple conditions and parameters could be used to explore

the efficacy of machine–human interfaces [43,44], determine

parameters for athletic performance and diagnose motor or

cognitive conditions with characteristic dynamics [45]. In the

context of this study, this combination of techniques has been

used to illustrate how visual perception can be augmented

with audio signals to enhance coordination. Such develop-

ments could prove useful for medical teams synchronizing
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different tasks, enhancing the fluidity of human–robot

interactions, or even learning to improve one’s tango.

4. Material and methods
All subjects were informed about the purpose and goal of the

study at the beginning of the experiment and gave consent.

After a preliminary survey about the experience in sports or per-

forming arts and questions about any conditions that would

exclude them from the study (including vision, hearing and arm

motion problems and history of poor experience with virtual

reality headsets), they were shown how to use the motion capture

suit and virtual reality headset comfortably. The subject was

familiarized with the mirror game outside of the virtual reality

environment through two quick practice rounds (one hand at a

time) with the researcher. Subjects were then instructed to

‘mirror [simultaneously] the motion, or velocity, of the avatar’

where the word ‘simultaneously’ was included in the training con-

ditions because it was unclear if all subjects understood what was

implied by mirroring in the untrained conditions. When audio

cues were used, they were also told, ‘Try to use the sound to predict

the motion of the avatar’s hand.’ Immediately previous to the start

of the mirroring task, they were reminded visually by a floating

script to ‘Mirror the hand.’ Periodically throughout the trial,

the comfort of subjects in the virtual environment was assessed

verbally. At the end of the experiment, all subjects filled out a

post-experimental survey to assess the comfort of the suit and

virtual headset, importance of fatigue, clarity of instructions and

to check if they had been following instructions.

A sequence of trials for a single hand consisted of 16 different

30 s trials where the first and last trials were always a fully visible

condition. During the experiments, the task was paused every

2–3 min to assess the subject for any poor reactions to the virtual

environment and to ask explicitly about fatigue. If the subject

expressed any sign of fatigue, a rest of time of at least 15 s was

taken.

The avatar’s hand motion were recordings of the entire body

of the experimenter while he was moving his arm naturally. Cor-

respondingly, there were small displacements of the shoulders,

upper torso, hips and legs with manual corrections to obvious

distortion using MotionBuilder. Arm movements were relatively

slow (,2 m s21) and smooth with frequent pauses and changes

in direction (�1 Hz) with a conscious attempt to avoid repetitive

motions or meaningful shapes to which subjects might entrain.

In the electronic supplementary material, we provide some

more detail about the motion and a motion file is available

online on the GitHub repository.

For the Train and Train þ Audio conditions, subjects were

told that the first 5 min of the experiment would consist of a prac-

tice round with a single break in the middle. During the break,

subjects were asked if they had any questions about their per-

formance. When audio cues were used, the experimenter

emphasized the instruction to use the audio cue and asked the

subjects to explain how they were using the audio cues. If they

made incorrect inferences about how the audio corresponded

to the motion—for example, one subject thought the volume of

the audio changed with the location of the avatar’s hand—the

experimenter explained to them how they were incorrect. To all

subjects, the experimenter explained that the audio cue had

pitch proportional to the speed of the avatar’s hand and

became higher in pitch when the avatar was moving faster and

lower when the avatar was slowing down or changing directions.

The tone’s instantaneous frequency F(t) increases with the speed

of the avatar’s hand jva(t)j as

F(t) ¼ c1ejva(t)j þ c0, (4:1)

where c0 and c1 were chosen to keep the frequency between

100 and 340 Hz, where the bounds were chosen to maximize
the easily audible range while minimizing discomfort. This expo-

nential dependence of the instantaneous frequency on the speed

of motion ensures that changes in the velocity of the avatar’s

hand are clearly distinguishable by frequency, a scaling distinct

from Weber’s law [46].

We collected data from 35 participants, but one subject was

excluded from the analysis because of professed disinterest in

the experiment and cursory completion of the post-experimental

survey that included answering an inapplicable question without

any mention or question to the experimentalist. Subjects ranged

in ages from 18 to 42 with varying levels of experience in phys-

ical activities requiring coordination with others. Experimental

protocol was approved by the institution’s IRB and the HRPO

at the DoD.

For aligning the velocity trajectories, we use DTW with a cost

function for the trajectory comparing times with indices i and j,

g(i, j) ¼
0, ti � tj þ 1

2

�� �� , 1

ti � tj þ 1
2

�� ��6, ti � tj þ 1
2

�� �� � 1:

(
(4:2)

To control the strength of this regularization, we set the coeffi-

cient of g to be l ¼ 1023 in the minimized objective function

(electronic supplementary material, section S3). We first use

FastDTW which can calculate the time warp in nearly linear

time instead of quadratic time [23]. If the found trajectory ven-

tures outside of the bounding interval Dt [ [21/2 s, 3/2 s], we

then solve the problem using our own (slower) implementation

including the regularization specified in equation (4.2). We find

that about 60% of the untrained trials were regularized whereas

only 35% of the trained trials were. We might expect this differ-

ence because untrained individuals typically do not replicate the

trajectory of the avatar as well and the algorithm is more prone to

misaligning stretches of motion.

To measure mirroring error, we measure the fraction of time

that the subject is within some time delay e* measured from

alignment with DTW:

p̂(t, f ; e�) ¼ 1
~T þ 2

1þ
X~T

~t

Q [e� � je (~t)j]
 !

, (4:3)

which is regularized by the Laplace counting estimator.

The indicator function, given by the Heaviside theta function

Q (x � 0)¼ 1 and Q (x , 0)¼ 0, counts when the subject is

within or beyond temporal error threshold. We use the warped

time ~t and normalize by the length of the warped trajectory ~T.

The distributions of durations of mirroring runs are given

by three classes: an exponential, a ‘sticky’ gamma-like function

with a dearth of the shortest decay times, and a heavy-tailed

‘robust’ distribution. Although the exponential decay is a signa-

ture of a memoryless process, the remaining two distributions

suggest that the dynamics of how subjects are tracking the

motion of the avatar are generated from a history-dependent

process.

The ‘sticky’ distribution is described by the complementary

cumulative distribution function (CDF) of decay times, otherwise

known as the survival function, as a function of a single rate

constant K

1� CDF (t0) ¼ e�Kt0
XN

n¼0

Knt0n

n!
: (4:4)

In the limit of N!1, we recover the gamma distribution. We

find that the measured values of N as calculated with maxi-

mum likelihood are concentrated at smaller values. Over

50% of the observed values are smaller than or equal to 5

when e* ¼ 1/2 s, suggesting that enhanced dynamical stab-

ility corresponding to the ‘sticky’ distribution is slight. The

‘robust’ distribution describes the first passage time for simple
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diffusion,

1� CDF (t0) ¼ 1�
ffiffiffiffi
a

p

r ðt0¼ta�=a

1=30

t�3=2e�a=t dt: (4:5)

Here, the lower limit is important and is given by our interpolation

of the velocity trajectories at 30 Hz (see electronic supplementary

material to find more information about methods).
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Endnotes
1We do not consider the x-axis which points from the subject to
the avatar. This axis is particularly problematic for the motion
capture system that we used and we found that timing errors could
be significant (electronic supplementary material, section S3).
2Some pairs of subjects and hands were not considered because of
errors in the code.
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38. Calvo-Merino B, Grèzes J, Glaser DE, Passingham RE,
Haggard P. 2006 Seeing or doing? Influence of
visual and motor familiarity in action observation.
Curr. Biol. 16, 1905 – 1910. (doi:10.1016/j.cub.2006.
07.065)

39. Minderer M, Harvey CD, Donato F, Moser EI. 2016
Virtual reality explored. Nature 533, 324 – 325.
(doi:10.1038/nature17899)

40. Aronov D, Tank DW. 2014 Engagement of neural
circuits underlying 2D spatial navigation in a rodent
virtual reality system. Neuron 84, 442 – 456. (doi:10.
1016/j.neuron.2014.08.042)

41. Morcos AS, Harvey CD. 2016 History-dependent
variability in population dynamics during evidence
accumulation in cortex. Nat. Neurosci. 19,
1672 – 1681. (doi:10.1038/nn.4403)

42. Stowers JR et al. 2017 Virtual reality for freely
moving animals. Nat. Methods 14, 995 – 1002.
(doi:10.1038/nmeth.4399)

43. Wickens CD. 2002 Multiple resources and
performance prediction. Theor. Issues Ergon. Sci. 3,
159 – 177. (doi:10.1080/14639220210123806)

44. Iqbal T, Gonzales MJ, Riek LD. 2015 Joint action
perception to enable fluent human – robot
teamwork. In Proc. 24th IEEE Int. Symp. on Robot
and Human Interactive Communication, Kobe, Japan,
31 August – 4 September 2015, pp. 400 – 406.
(doi:10.1109/ROMAN.2015.7333671)
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