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Understanding the orientation dynamics of anisotropic colloidal particles is important
for suspension rheology and particle self-assembly. However, even for the simplest
case of dilute suspensions in shear flow, the orientation dynamics of non-spherical
Brownian particles are poorly understood. Here we analytically calculate the time-
dependent orientation distributions for non-spherical axisymmetric particles confined
to rotate in the flow–gradient plane, in the limit of small but non-zero Brownian
diffusivity. For continuous shear, despite the complicated dynamics arising from the
particle rotations, we find a coordinate change that maps the orientation dynamics to a
diffusion equation with a remarkably simple ratio of the enhanced rotary diffusivity to
the zero shear diffusion: Dr

eff /D
r
0= (3/8)(p− 1/p)2+ 1, where p is the particle aspect

ratio. For oscillatory shear, the enhanced diffusion becomes orientation dependent and
drastically alters the long-time orientation distributions. We describe a general method
for solving the time-dependent oscillatory shear distributions and finding the effective
diffusion constant. As an illustration, we use this method to solve for the diffusion and
distributions in the case of triangle-wave oscillatory shear and find that they depend
strongly on the strain amplitude and particle aspect ratio. These results provide new
insight into the time-dependent rheology of suspensions of anisotropic particles. For
continuous shear, we find two distinct diffusive time scales in the rheology that scale
separately with aspect ratio p, as 1/Dr

0p4 and as 1/Dr
0p2 for p� 1. For oscillatory

shear flows, the intrinsic viscosity oscillates with the strain amplitude. Finally, we
show the relevance of our results to real suspensions in which particles can rotate
freely. Collectively, the interplay between shear-induced rotations and diffusion has
rich structure and strong effects: for a particle with aspect ratio 10, the oscillatory
shear intrinsic viscosity varies by a factor of ≈2 and the rotational diffusion by a
factor of ≈40.
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1. Introduction
Stir a solution and the solute will mix faster than when the solution is left quiescent.

This mixing is enhanced even at low Reynolds numbers due to the coupling of random
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Brownian motion and spatially-varying fluid velocities. Brownian motion causes solute
particles to access different fluid streamlines, which in turn differentially advect the
solute particles. On long times, this combination of diffusion and advection looks
the same as an enhanced translational diffusion. This mechanism, known as Taylor
dispersion, occurs in a wide variety of natural and industrial processes ranging from
drug delivery in the bloodstream (Fallon, Howell & Chauhan 2009) to microfluidic
lab-on-a-chip setups (Datta & Ghosal 2009), with high Reynolds number analogues
even determining mixing in streams and rivers (Fischer 1973). Taylor dispersion is
only one example of the broader coupling that occurs between advection and diffusion
that is used to manipulate mass transport across many scales, ranging from chaotic
mixing in microchannels (Stroock et al. 2002) to particle clustering in turbulent fluids
(Balkovsky, Falkovich & Fouxon 2001).

Anisotropic particles allow for more complex coupling between diffusion and
convection, due to the additional orientational degrees of freedom they possess.
Under shear, an isolated ellipsoid’s orientation is not constant, but instead rotates
with the flow in an unsteady motion known as a Jeffery orbit (Jeffery 1922).
In colloidal suspensions, rotational Brownian motion also changes the particles’
orientations, creating the possibility of a coupling between the Jeffery orbit and
rotational diffusion. Recently, through experiments and simulations Leahy et al.
(2013) observed an enhancement of the rotational diffusion for colloidal dimers under
shear, suggesting that such a coupling does exist. However, little is known about this
coupling compared to its translational counterparts.

In this paper, we take the first steps towards calculating analytically the effects
of rotary diffusion coupled with Jeffery orbits. In the rest of § 1, we first review
previous work on the effects of rotational diffusion coupled with Jeffery orbits. In
§ 2, we find the time-dependent orientation distribution for a dilute suspension of
axisymmetric particles subjected to continuous shear. To make the analysis tractable,
we examine the limit where the shear rate is large (i.e. Pe � 1, where the Péclet
number Pe ≡ γ̇ /Dr

0 is the ratio of the shear rate to the zero-shear rotary diffusion
constant), and we restrict the particle orientations to reside in the flow–gradient plane,
which is a representative Jeffery orbit. Remarkably, we find that the complicated
convection–diffusion equation describing the particle’s orientations maps to a simple
diffusion equation in a new coordinate with an enhanced diffusion constant. In § 3,
we generalize these results to derive the time-dependent evolution of non-spherical
particle orientations under oscillatory shear. Even in the limit of large shear rates,
the oscillatory shear distributions and diffusive dynamics differ considerably from
the continuous shear distributions. In § 4, we examine particular solutions of the
oscillatory shear equations, taking triangle-wave shear as an analytically tractable
example. In § 5, we use our results to explore how rotational diffusion affects the
rheology of a suspension of non-spherical particles at large shear rates. Finally, in § 6,
we close by comparing our results to traditional Taylor dispersion and demonstrating
their relevance to real three-dimensional particle orientations.

While Jeffery explained the rotation of an ellipsoid, his solution does not address
particles of other shapes. However, symmetry and group theory arguments can be
used to ascertain how a general particle rotates (Happel & Brenner 1983). For an
axisymmetric particle, the orientation is completely specified by a unit normal n. As
shown by Bretherton (1962), any axisymmetric particle in Stokes flow rotates in a
Jeffery orbit as:

dn
dt
= n ·Ω + λ[E · n− n (n · E · n)]. (1.1)
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Here Ω and E are the fluid vorticity and rate-of-strain tensors, Ωij ≡ (∂iuj − ∂jui)/2
and E ij ≡ (∂iuj + ∂jui)/2. The coefficient λ is a scalar constant which depends on the
particle geometry and can be found from solving the full Stokes equations. Jeffery
(1922) showed for an ellipsoid of revolution that λ≡ (p2− 1)/(p2+ 1), where p is the
particle aspect ratio. For simple, continuous shear with strain rate γ̇ , (1.1) simplifies
considerably. If |λ|< 1, which is usually the case, then the magnitude of the second
term is always less than the first term, and the particle rotates indefinitely. Denoting θ
as the polar angle measured from the vorticity direction and φ as the azimuthal angle
from the gradient direction in the flow–gradient plane, (1.1) admits the solution

tan φ = p tan
(

γ̇ t
p+ 1/p

+ κ
)
,

tan θ =C
(

p cos2 φ + 1
p

sin2 φ

)−1/2

,

 (1.2)

where p is an effective aspect ratio and the phase angle κ and orbit constant C capture
the particle’s initial orientation. Equations (1.1) and (1.2) show a symmetry under
the transformation p→ 1/p, φ→ φ + π/2; thus, the motion of disc-like and rod-like
particles is the same up to a change of axes. Note that (1.2) employs a different
definition of C than usual in the literature to emphasize the p → 1/p symmetry.
The particle rotates in one of an infinite number of Jeffery orbits, each of which
is described by an orbit constant C determined by the particle’s initial orientation.
Since the orbits are periodic, there is no mechanism to select a unique long-time
distribution of orientations.

In colloids, rotational diffusion also affects the particles’ orientations. The
probability distribution ρ of finding a rod at orientation (θ, φ) is given by a
Fokker–Planck equation:

∂ρ

∂t
=Dr

0∇2ρ −∇ · (ρu), (1.3)

u= φ̂
γ̇

p+ 1/p

(
p cos2 φ + 1

p
sin2 φ

)
sin θ + θ̂

γ̇ (p2 − 1)
4(p2 + 1)

sin 2φ sin 2θ. (1.4)

Here t is the time, Dr
0 is the rotary diffusion constant, u is the Jeffery orbit’s rotary

velocity field from (1.1), φ̂ and θ̂ are unit vectors in the φ and θ directions, and
the divergence and Laplacian operators act in orientation space (θ, φ). The relative
strength of the diffusive term Dr

0∇2ρ to the advective term ∇ · (ρu) is quantified
by a rotary Péclet number Pe = γ̇ /Dr

0. While ordinarily the diffusion in (1.3) is
due to Brownian motion, (1.3) has also been used to capture the effects of random
hydrodynamic interactions in non-Brownian fibre suspensions at finite concentrations
(Folgar & Tucker 1984; Rahnama, Koch & Shaqfeh 1995). As a result, (1.3) has
been analysed in many different limiting values of the Péclet number, which we now
describe.

Low shear rates, Pe� 1. When there is no shear, (1.3) reduces to a simple diffusion
equation, and the particle orientations become isotropically distributed on times
longer than 1/Dr

0. When Pe is small but non-zero, the distribution can be found
through a straightforward perturbation approach. If the particle is elongated (p > 1),
to first order in Pe the steady-state orientation distribution is enhanced along the
flow’s extensional axis, where the Jeffery orbit has a negative divergence, and the
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distribution is suppressed along the flow’s compressive axis, where the Jeffery orbit
has a positive divergence. This perturbation expansion can be extended to yield a
power series in Pe = γ̇ /Dr

0 (Peterlin 1938; Stasiak & Cohen 1987; Strand, Kim &
Karrila 1987) and has been evaluated numerically up to many orders in Pe. However,
the series does not converge for Pe & 1, and other methods must be used to find the
distribution for such flows (Kim & Fan 1984).

High shear rates, Pe� 1. Early attempts to calculate the distributions in the limit of
weak diffusion simply looked for a steady-state solution to (1.3) with Dr

0=0. However,
this procedure produces an apparent indeterminacy in ρ, since without diffusion there
is no mechanism to select a steady-state distribution of orbit constants. Leal and Hinch
realized that weak diffusion primarily acts to select a distribution of the particles’
phase angles κ and orbit constants C (Leal & Hinch 1971; Hinch & Leal 1972).
When p � 1 the mode of the steady-state distribution has an orbit constant C ≈√

p/8, corresponding to an orbit that bends strongly towards the flow direction when
φ = π/2 but returns to a moderate distance away from the gradient direction when
φ= 0. Diffusion also randomizes κ and orients most particles near the flow direction,
where the orbit’s rotational velocity is slow. As a result, the steady-state distribution
is strongly aligned with the flow for large p.

Intermediate shear rates, 1 � Pe � (p + 1/p)3. When the particle aspect ratio is
large p � 1, (1.4) shows that the particle rotates extremely slowly when oriented
near the flow direction. As a result, for large p it is possible for the Jeffery orbit
to be dominant compared to diffusion over most of the orbit, but for diffusion to
be important in a small orientational boundary layer of size ∼1/p near φ = π/2.
Hinch & Leal (1972) showed that in this intermediate regime (1 � Pe � p3), the
fraction of particles oriented away from the flow direction decreases as ∼1/Pe1/3.
These predictions at high and intermediate Pe have been verified experimentally, both
quantitatively (Vadas et al. 1976) and qualitatively (Frattini & Fuller 1986; Gason,
Boger & Dunstan 1999; Jogun & Zukoski 1999; Brown et al. 2000; Pujari et al.
2009; Leahy et al. 2013).

Dynamics. The time evolution of ρ is of interest since it determines the startup
rheology of a suspension of rod-like particles. At low Pe, the time dynamics are
determined by rotational diffusion, and there is only one time scale of interest. At
Pe = 0, the evolution of the particle orientations is described by a simple diffusion
equation, which has been studied extensively (Furry 1957; Hubbard 1972; Valiev
& Ivanov 1973). At low but non-zero Pe, the dynamics of (1.3) have been studied
since Peterlin (1938) through series expansions in Pe, partly as a model of polymeric
solutions under startup flows. At second order and higher in Pe, the orientation
transients in a suspension cause a stress overshoot, followed by an undershoot (Bird,
Warner & Evans 1971; Stasiak & Cohen 1987; Strand et al. 1987).

At high Pe the time variation due to the Jeffery orbit becomes important. However,
since the rotation is periodic, the Jeffery orbit by itself does not lead to a steady-state
distribution. The distribution in (1.3) instead approaches steady state due to diffusion,
which occurs on a longer time scale. Thus, in contrast to the low Pe case, at high Pe
there are two time scales which determine the evolution of ρ. The time-dependence of
ρ due to the Jeffery orbit at high Pe has been well-studied. At short times, the Jeffery
orbit causes oscillations in ρ, which have been observed experimentally through direct
imaging (Okagawa, Cox & Mason 1973; Okagawa & Mason 1973), flow dichroism
(Frattini & Fuller 1986; Krishna Reddy et al. 2011), and suspension rheology (Ivanov,
van de Ven & Mason 1982).
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Comparatively less work has focused on the approach of ρ to steady state due
to diffusion. Hinch & Leal (1973) attempted to solve (1.3) exactly by separation of
variables. While they were not able to obtain an exact solution, they made scaling
arguments based on the orthogonality of the eigenfunctions of the convection–diffusion
operator to qualitatively understand the time evolution of ρ, arguing that at high Pe
there were two diffusive time scales in the rheology. Recently, through a combination
of experiments and simulation Leahy et al. (2013) showed that oscillatory shear at
high Pe enhances rotational diffusion, as measured from the orientational correlations.
This enhancement was attributed to a mechanism where rotational diffusion allows
different particles to access regions of different rotational velocity, leading to an
enhanced effective diffusion. An analytical solution of the rotational dynamics under
shear would provide additional insight into the effect of shear on rotational diffusion.

2. Orientation dynamics under continuous shear
A full time-dependent solution to (1.3) has not been found for over seventy years.

Even in the limit of large shear rates (Pe � 1), a uniformly valid time-dependent
solution does not exist. Rather than attempt to solve (1.3) exactly, then, we examine
the case where the particle is restricted to the most extreme Jeffery orbit along the
flow–gradient plane (i.e. θ =π/2). Equation (1.3) then simplifies to

∂ρ

∂t
=Dr

0
∂2ρ

∂φ2
− ∂

∂φ
[ρu(φ)],

u(φ)= γ̇

p+ 1/p

(
p cos2 φ + 1

p
sin2 φ

)
.

 (2.1)

Since this Jeffery orbit has the largest variation in angular velocities and is
representative of the Jeffery orbit’s φ dynamics, we expect that it captures the
essence of the orientation dynamics along the Jeffery orbits in three dimensions; we
defer a discussion of three-dimensional orientation dynamics to § 6.

At high Pe, the complicated advective term is dominant, while the much simpler
diffusive term is weak. The reverse case would be easier to treat: if the advective term
were simple and the diffusion term complicated, we could hope to solve the dominant
advective portion exactly and to treat the weak diffusion with a singular perturbation
scheme. When written in the φ-coordinate, the advective term is complicated due
to the rotation of the Jeffery orbit. This suggests that we parameterize the particle’s
orientation by a coordinate that does not change due to the Jeffery orbit. We define
new coordinates (κ, t′) such that

∂κ

∂φ
= ū

u(φ)
,
∂κ

∂t
=−ū,

∂t′

∂φ
= 0,

∂t′

∂t
= 1,

 (2.2)

where ū is the mean velocity over an entire Jeffery orbit, i.e. ū≡1φ/TJO = γ̇ /(p+
1/p) where 1φ = 2π and TJO is the Jeffery orbit period from (1.2). The constant ū
non-dimensionalizes the velocity; the reason for this choice is discussed in § 3. For a
Jeffery orbit, the new coordinates are the same as the phase angle defined in (1.2):

p tan(ūt′ + κ)≡ tan φ, (2.3)
t′ ≡ t; (2.4)
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(a) (b) (c)

FIGURE 1. (Colour online) The continuous-shear distributions ρ(φ) from (2.14) for a
particle with aspect ratio p≈ 2.83. (a) ρ(φ) in steady state. Here the value of ρ is shown
by the distance from the central black ring; the dotted black line shows the zero-shear
equilibrium distribution (ρ= 1/2π). The solid black lines correspond to 12 equally-spaced
angles at φ = nπ/6. The red arrows indicate the Jeffery orbit velocity (1.1). (b,c) The
ancillary distribution f in the stretched space. The angular portion of (2.3), shown in (b),
stretches the space significantly, visible from the bunched φ gridlines, and turns the Jeffery
orbit into a uniform rotation. By transforming to a rotating reference frame (c), the
uniform rotation in (b) is removed.

the definition in (2.2) gives a construction of κ for arbitrary rotary velocity fields.
These coordinates are illustrated schematically in figure 1. Under the angular portion
of the coordinate change, lines spaced by constant φ (figure 1a) get bunched in κ
(figure 1b) to reflect the velocity differences along the orbit, causing the particles’
motion (red arrows) to look like a uniform rotation. This angular portion of the
coordinate change is the coordinate space used by Leal & Hinch (1971) to determine
the steady-state distributions under continuous shear. The t dependence of κ in (2.2)
removes this uniform rotation (figure 1c).

In this new phase-angle coordinate κ , advection due to the Jeffery orbit is
completely removed. The probability of finding a particle with a phase angle in
(κ, κ + dκ) evolves solely due to diffusion. Thus, instead of writing (2.1) with
the distribution ρ(φ), we recast (2.1) in terms of an ancillary distribution f (κ) that
describes the probability of finding a particle in the region (κ, κ + dκ):

f (κ)≡ ρ ∂φ
∂κ
= ρ u

ū
. (2.5)

With the new coordinates (κ, t′) and the ancillary distribution f , (2.1) can be recast
into a simpler form. Direct substitution of the definition of f into (2.1) gives

ū
u(φ)

∂f
∂t
=Dr

0
∂2

∂φ2

(
ū

u(φ)
f
)
− ū

∂f
∂φ
. (2.6)

Transforming the derivatives to the new coordinates, (2.6) can be written after some
simple rearrangements as

∂f
∂t′
=Dr

0
∂

∂κ

[
ū
u
∂

∂κ

(
ū
u

f
)]

, where

ū
u(φ)
=
[

p cos2 φ + 1
p

sin2 φ

]−1

= 1
p

cos2(κ + ūt)+ p sin2(κ + ūt).

 (2.7)



48 B. D. Leahy, D. L. Koch and I. Cohen

This construction of κ and f (κ) results in an ancillary distribution f that does not
move with the Jeffery orbit; all the time evolution of f (κ) arises from diffusion,
as visible from (2.7). The initial equation (2.1) is a complicated partial differential
equation in simple coordinates. By making the coordinate change φ→ κ , (2.1) has
been transformed into a more tractable partial differential equation in complicated
coordinates. Since the coordinate change is straightforward, we can analyse (2.7) in
the stretched coordinates to understand the rod’s dynamics, and easily transform back
to φ afterward.

Equation (2.7) is exact, describing both the significant long-time diffusion of the
particle orientations and the small, less important short-time changes due to coupling
between the Jeffery orbits and diffusion. To understand the orientation distribution
when diffusion is small, we introduce a dimensionless advective time t= ūt′ and the
dimensionless diffusion or inverse Péclet number ε ≡ Dr

0/ū. In dimensionless form,
(2.7) then becomes

∂f
∂t
= ε ∂

∂κ

[
ū
u
∂

∂κ

(
ū
u

f
)]

. (2.8)

We wish to understand the evolution of f on long times t& 1/ε, in the limit ε→ 0.
To isolate the long-time behaviour, we find the net change of f after a full Jeffery
orbit by integrating (2.7) over a period of a Jeffery orbit, ūTJO = 2π. Expanding the
derivatives in (2.8) and integrating gives

f (κ, t+ 2π) = f (κ, t)+ ε
{∫ t+2π

t

(
ū

u(φ(κ, τ ))

)2
∂2f
∂κ2

dτ

+ 3
2

∫ t+2π

t

∂

∂κ

(
ū

u(φ(κ, τ ))

)2
∂f
∂κ

dτ

+ 1
2

∫ t+2π

t

∂2

∂κ2

(
ū

u(φ(κ, τ ))

)2

f dτ

}
, (2.9)

where τ is a dummy variable of the integration.
By assuming that the diffusion is weak (i.e. the dimensionless diffusion ε≡Dr

0/ū�
1), these integrals can be simplified considerably. Since f changes slowly with time,
cf. (2.8), f and its derivatives in κ can be Taylor expanded in t about t= 0 : f (κ, t)=
f (κ, 0)+ t∂f /∂t(t = 0)+ O(t2). But by construction ∂f /∂t= O(ε), so f (κ, t) can be
approximated by f (κ, 0), with a correction to (2.9) of O(ε2). In contrast, the function
u(κ + t) cannot be approximated by u(κ), since ∂u/∂t is O(1). Thus, to first order in
ε, (2.9) can be written as

f (κ, t+ 2π)− f (κ, τ ) = ε

{
∂2f
∂κ2

∫ t+2π

t

(
ū

u(κ + τ)
)2

dτ

+ 3
2
∂f
∂κ

∫ t+2π

t

∂

∂κ

(
ū

u(κ + τ)
)2

dτ

+ 1
2

f
∂2

∂κ2

∫ t+2π

t

(
ū

u(κ + τ)
)2

dτ

}
+O(ε2). (2.10)

This finite-time update equation can be recast as a differential equation in the limit
ε→ 0. Define a new dimensionless time τ ≡ εt≡Dr

0t. Rewriting the integrals in (2.10)
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as averages gives

f (κ, τ + 2πε)− f (κ, τ )
2πε

=
〈(

ū
u

)2
〉
∂2f
∂κ2
+ 3

2
∂

∂κ

〈(
ū
u

)2
〉
∂f
∂κ
+ 1

2
∂2

∂κ2

〈(
ū
u

)2
〉

f

(2.11)

where 〈·〉 denotes the average over a Jeffery orbit period. In the limit of large shear
rates ε → 0, and this update equation becomes a differential equation. Re-casting
back to the dimensional (κ, t′) coordinates, (2.10) can be written as the differential
equation

∂f
∂t′
=Dr

0

[〈(
ū
u

)2
〉
∂2f
∂κ2
+ 3

2

〈
∂

∂κ

(
ū
u

)2
〉
∂f
∂κ
+ 1

2

〈
∂2

∂κ2

(
ū
u

)2
〉

f +O(ε)

]
.

(2.12)

In addition, the second and third integrals on the right-hand side of (2.12) can
be simplified. Since the rotation rate u is a function of κ + ūt′ only, cf. (2.7), the
derivatives of u can be rewritten as ∂u/∂κ = ū∂u/∂t′. Consequently, the second and
third terms become integrals of a derivative, and vanish since u and its derivative are
periodic. As a result, only the first of the three integrals in (2.12) is non-zero.

Remarkably, in the limit ε → 0 these manipulations transform the complex
orientation dynamics in (2.1) into a simple diffusion equation with a uniform diffusion
constant:

∂f
∂t′
=Dr

0

〈(
ū
u

)2
〉
∂2f
∂κ2

, (2.13)

where the angle brackets denote a time-average over one orbit. On long times, the
rod’s orientation moves diffusively in the stretched space with an effective diffusion
constant Dr

eff = Dr
0〈(ū/u)2〉. When diffusion is small, it acts to randomize the phase

angle κ of the rod’s Jeffery orbit. While the randomizing kicks of diffusion coupled
to the Jeffery orbit do not produce diffusive behaviour in real φ-space, their combined
effect results in an emergent simple diffusion in the stretched κ-space.

Up to this point, none of the results depend on the specific form of the Jeffery orbit.
All that is required to proceed up to (2.13) is a rotary velocity field u(φ) that is non-
zero and gives rise to periodic orbits, allowing for an appropriate coordinate change.
The details of the Jeffery orbit only enter into the value of the effective diffusion
constant Dr

eff and in the definition of κ and f (κ). At long times, f (κ)= 1/2π and κ
is completely randomized, giving a steady-state distribution

ρ(φ)= 1
2π
[p cos2 φ + 1/p sin2 φ]−1, (2.14)

i.e. rods with p > 1 mostly orient along the flow direction (φ ≈ π/2), where the
Jeffery orbit velocity is slowest, cf. figure 1. This long-time distribution is the two-
dimensional version of Leal and Hinch’s solution.

More importantly, our derivation also allows us to calculate an analytical solution
for the orientation dynamics. Evaluating the average 〈(ū/u)2〉 we find a simple form
for the effective diffusion constant Dr

eff :

Dr
eff /D

r
0 = 3

8(p− 1/p)2 + 1. (2.15)
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Equation (2.15) states that the effective diffusion of rod-like particles is enhanced
under shear, in agreement with experiments in three dimensions (Leahy et al. 2013).
The effective diffusion constant Dr

eff is symmetric with respect to p→ 1/p, respecting
the symmetry of the Jeffery orbits. For spherical particles, which have p = 1 and
undergo uniform rotation, the rotational diffusion is not enhanced: Dr

eff (p= 1)/Dr
0= 1.

Just as Taylor dispersion requires non-uniform translational velocities to enhance the
diffusion, a non-uniform Jeffery orbit is required to enhance the rotational diffusion.

The ∼p2 enhancement of the diffusion for p � 1 can be understood from the
structure of the Jeffery orbit. As can be seen from (2.1), for most of the rod’s
possible orientations the Jeffery orbit’s rotation scales as u∼ γ̇ , independent of aspect
ratio. Thus, over most of the Jeffery orbit, the relative effect of diffusion compared
to advection is Dr

0/u ∼ Dr
0/γ̇ . However, when the particle is aligned with the flow

(φ ≈ π/2), the particle’s rotation is considerably slower, of order ∼γ̇ /p2 when p is
large. Thus, near the flow direction, the relative effect of diffusion is Dr

0/u∼Dr
0p2/γ̇ ,

larger by a factor of p2. This p2 enhancement of the effect of diffusion produces the
p2 scaling of the effective diffusion in (2.15).

Since (2.13) is a simple diffusion equation in the phase-angle coordinate κ , a
solution for f (κ, t′) is easy to obtain by separation of variables. For a particle with
phase angle κ0 at time t′ = 0, the ancillary distribution f evolves as

f (κ, t′)= 1
2π
+ 1

π

∞∑
m=1

cos[m(κ − κ0)]exp
(−m2Dr

eff t
′). (2.16)

In practice, however, the orientation dynamics in the original φ-space are of
interest, not the dynamics in κ-space. In principle, the dynamics of any distribution
in φ-space can be calculated by substituting the relation between κ and φ, given
in (2.3), into a solution of (2.13) such as (2.16). Alternatively, the evolution of a
rod’s orientation in κ-space can be measured instead. Correlations in κ , such as
〈cos m(κ − κ0)〉= exp(−m2Dr

eff t) suggested by (2.16), provide direct information about
the enhanced diffusion constant. Additionally, any function of φ also can be written
in terms of κ and t′, allowing for any expectation value to be evaluated in κ-space.

Nevertheless, even without this substitution, many details of the orientation
dynamics in φ can be gleaned from the solutions for f (κ) in (2.16). In particular, the
distributions ρ or f relax to their steady-state values with a spectrum of exponential
decays superimposed on the Jeffery orbit’s oscillation. The spectrum of decay
times for these exponentials is 1/m2Dr

eff for integer m, the same decay times as
the zero-shear diffusion equation but with an enhanced diffusion constant Dr

eff instead
of Dr

0. The slowest of these time scales, 1/Dr
eff , will determine how fast a generic

expectation value relaxes to its steady state, including the correlations determining
the rheology discussed in § 5.

To test our solution (2.15) for the orientation dynamics, we simulated (2.1) over a
large range of aspect ratios at a large Péclet number of Pe≡ γ̇ /Dr

0= 104, as described
in appendix A. The φ correlations 〈cos m(φ−φ0)〉 are not diffusive but instead exhibit
oscillations with complicated damping and orientational dependence. In contrast, the
theory described above predicts that the correlations in κ-space follow a diffusive
behaviour with correlations that decay as simple exponentials. We test this prediction
by fitting the κ correlations in our simulations to the exponential decay 〈cos[m(κ(t)−
κ(0))]〉 = exp(−m2Dr

eff t) suggested by (2.16), as shown in figure 2. We find excellent
agreement over a wide range of particle aspect ratios, with diffusion constants given
by (2.15).
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FIGURE 2. (Colour online) Rotational diffusion under continuous shear in the stretched
κ-space. (a) Semi-log plot of the correlations 〈cos(m1κ)〉 versus time for an aspect
ratio p ≈ 2.83 and Pe = 104. The black dotted lines correspond to diffusive correlations
with the diffusion constant from (2.15); the coloured lines correspond to the simulated
correlations. There is excellent agreement with no adjustable parameters. At long times,
higher-order corrections in 1/Pe are visible as the broadening into bands when the
correlations decrease below ≈10−4 (grey shaded region). (b) The diffusion constant Dr

eff ,
extracted from simulated m = 1 correlations, plotted versus aspect ratio (cyan circles),
alongside the prediction from (2.15) (black line).

Equation (2.7) only describes the singular contribution of diffusion to the
distribution and is not correct to O(ε) at long times. Indeed, the steady-state solution
ρ ∝ 1/u in (2.14) only satisfies the ∇ · (ρu) portion of (2.1); the ε∇2ρ term remains.
Thus our solution is not a full solution to O(ε) but only captures the cumulative
effects of the small diffusion that accrue over long times. It is this O(ε) discrepancy
which appears as the broadening of the bands in figure 2(a). The true steady-state
distribution ρ(φ) can be written as ρ(φ)=ρ0(φ)+ ερ1(φ), where ρ0(φ) is the solution
given in (2.14). After long times, the correlations 〈cos m1κ〉 are then

〈cos m1κ〉 =
∫ 2π

0
cos(m1κ)ρ0 dφ + ε

∫ 2π

0
cos(m1κ)ρ1 dφ. (2.17)

While the first term is zero by construction of κ , in general the second term is non-
zero and gives an O(ε) correction to the correlations at long times. Since φ = φ(κ +
ūt), the function cos m1κ oscillates in time, in turn creating a residual O(ε) long-
time oscillation in the correlations. This oscillation is visible in figure 2 at correlation
values below ∼1/Pe, appearing as solid bands due to the many Jeffery orbits spanned
by the x-axis.

3. Oscillatory shear equations
The success of (2.13) and (2.15) at accurately describing the dynamics of rod-like

particles subjected to continuous shear suggests that we use a similar framework to
examine the dynamics of rods in intrinsically unsteady flows. To this end, we derive
an equation analogous to (2.13) that describes the distribution’s evolution under an
arbitrary oscillatory shear waveform. We show a general method for its solution,
which we then implement in § 4.

To find the distributions under oscillatory shear, we follow the spirit of the
derivation in § 2 for continuous shear. Under oscillatory shear, the distribution ρ
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is described by a convection–diffusion equation similar to (2.1), except that the
magnitude of the rotational velocity changes with time. If Γ̇ (t) is the dimensionless
waveform describing the oscillatory shear, such that the instantaneous shear rate is
Γ̇ (t)γ̇ , then the convection–diffusion equation for the particle’s orientation takes the
form

∂ρ

∂t
=Dr

0
∂2ρ

∂φ2
− ∂

∂φ
[ρΓ̇ (t)u(φ)]. (3.1)

When written in the coordinate φ, the advective portion is exceptionally complicated
since the rotational velocity field itself oscillates with the flow through Γ̇ (t), in
addition to the change of φ with time. Like the case for continuous shear, the
advective term will be considerably simpler when written in terms of the phase
angle κ . Thus, we define new coordinates (κ, t′) such that κ changes only due to
diffusion:

∂κ

∂φ
= ū

u(φ)
,
∂κ

∂t
=−Γ̇ (t)ū,

∂t′

∂φ
= 0,

∂t′

∂t
= 1,

 (3.2)

where ū and u(φ) are defined as before. These coordinates are defined the same way
as for continuous shear, except that there is an additional factor of Γ̇ (t) in ∂κ/∂t
to capture the shear flow’s oscillation. Continuing to follow the continuous shear
derivation, we recast (3.1) in terms of the ancillary distribution f . Since the angular
part of the coordinate change ∂κ/∂φ remains the same as for continuous shear, f (κ)
again takes the form (2.5).

With the new oscillatory shear coordinates (κ, t′) and the ancillary distribution f ,
(3.1) can be cast into a simpler differential equation, following the continuous shear
argument. Direct substitution of the definition of f gives

ū
u(φ)

∂f
∂t
=Dr

0
∂2

∂φ2

(
ū

u(φ)
f
)
− Γ̇ (t)ū ∂f

∂φ
. (3.3)

By transforming the derivatives to the new coordinates, (3.3) can be written as

∂f
∂t′
=Dr

0
∂

∂κ

[
ū
u
∂

∂κ

(
ū
u

f
)]

. (3.4)

Once again, the construction of κ and f (κ) results in an ancillary distribution f that
only evolves due to diffusion. Equation (3.4) exactly describes this evolution in the
new coordinates for all Pe.

Equation (3.4) is the same form as (2.7) for continuous shear, but it has a hidden
difference in the value of u(φ(κ, t′)) which we now elucidate. Rearranging the
coordinate derivatives (3.2) to find ∂φ/∂t′ and ∂φ/∂κ gives an equation for φ in
terms of κ and t′:

∂φ

∂t′
= Γ̇ (t)ū∂φ

∂κ
. (3.5)

Thus, φ is a function of κ + ūΓ (t′), where Γ (t′) is the antiderivative of Γ̇ (t′). In
comparison, under continuous shear φ has a simpler dependence on κ + ūt′, without
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the complication due to the functional form of Γ (t′). For the particular case of a
Jeffery orbit, ū/u is

ū
u(φ)
=
[

p cos2 φ + 1
p

sin2 φ

]−1

= 1
p

cos2[κ + ūΓ (t′)] + p sin2[κ + ūΓ (t′)], (3.6)

which is similar to (2.7) for continuous shear but contains a different t′ dependence.
Since (3.4) is the same form as its continuous shear counterpart (2.7), it can be

analysed in the same manner in the limit of large Pe. In particular, we can find the
change in f after one cycle of oscillatory shear, instead of after one Jeffery orbit,
by following the steps in (2.8)–(2.10). An update equation similar to (2.10) can
be obtained by writing (3.4) with dimensionless variables ε ≡ Dr

0/ū and t ≡ ūt and
integrating over the period of one oscillation (t, t + ūTcyc), where Tcyc is the period
of the oscillatory shear waveform Γ (t). The same argument as in (2.11) and (2.12)
then recasts this update equation into a differential equation for the time evolution of
f , valid in the limit that f does not change significantly over a cycle εūTcyc→ 0:

∂f
∂t′
=D(κ)

∂2f
∂κ2
+ 3

2
∂D

∂κ

∂f
∂κ
+ 1

2
∂2D

∂κ2
f , where (3.7)

D(κ)/Dr
0 ≡
〈(

ū
u(κ + ūΓ (τ))

)2
〉
≡ 1

Tcyc

∫ Tcyc

0

(
ū

u(κ + ūΓ (τ))

)2

dτ . (3.8)

Equation (3.7) is similar to (2.13), but with an angularly-varying diffusion coefficient
D(κ). For continuous shear, the effective diffusion constant arises from averaging the
rotary velocity field over the entire Jeffery orbit. Since the Jeffery orbit is periodic,
after a fixed time a particle at any initial orientation has sampled the entire rotary
velocity field, leading to an effective diffusion which is independent of starting
orientation. For oscillatory shear, a particle does not in general sample an entire
Jeffery orbit. The particle’s effective diffusion instead results from an average over
the portions of the orbit which the particle does sample, and particles at different
orientations experience an angularly varying diffusion coefficient D(κ).

There are salient differences between the oscillatory shear equation (3.7) and the
continuous shear equation (2.13). Equation (3.7) is not a simple diffusion equation in
the κ-coordinate: terms proportional to both f and ∂f /∂κ appear, and the coefficient
D(κ) of the second-derivative term ∂2f /∂κ2 is not constant. Even more striking, the
long-time solution to (3.7) is not constant in κ , evidently depending on the effective
diffusivity D(κ). The variation of D(κ) with orientation causes particles to drift away
from an isotropic distribution in κ , similar to the mechanisms driving concentration
gradients induced by turbophoresis (Reeks 1983; Balkovsky et al. 2001), orientation
gradients of rods flowing through a fixed bed (Shaqfeh & Koch 1988), or the creation
of absorbing states observed in dense suspensions of non-Brownian spheres and rods
under oscillatory shear (Corté et al. 2008; Franceschini et al. 2011; Keim, Paulsen &
Nagel 2013).

The difference between the oscillatory shear and the continuous shear distributions
arises from diffusion. While the continuous shear distribution in the limit Dr

0/ū= 0 is
the same for forward and backward shear, there are higher-order corrections in Dr

0/ū
to the distribution that break this symmetry (Hinch & Leal 1972). Under oscillatory
shear at large strain rates, these small corrections to the distribution oscillate with the
flow, building up after many cycles to create a long-time distribution that differs from
the continuous shear distribution, even in the limit of infinitesimal diffusion.
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Rearranging (3.7) provides additional insights into the oscillatory shear distributions’
evolution. Writing (3.7) in the form ∂f /∂t′ =−∂J/∂κ , where J is a probability flux,
explicitly shows the conservation of probability:

∂f
∂t′
=− ∂

∂κ

[
−D ∂f

∂κ
− 1

2
∂D

∂κ
f
]
. (3.9)

Here the flux J consists of two terms: one reminiscent of a diffusive term with
a diffusion constant D and one reminiscent of a drift term with a drift velocity
− 1

2∂D/∂κ . It is this latter effective drift velocity, arising from the spatially-varying
diffusion in (3.8), that causes the particle orientations to drift away from the
continuous shear steady-state distribution. Setting ∂f /∂t′ = 0 gives the distribution
at long times as

f (κ)∝ (D/Dr
0)
−1/2, ρ(φ)∝ ū

u
(D/Dr

0)
−1/2. (3.10)

To obtain a simple description of the dynamics of the orientation distribution, we
follow a procedure similar to that in § 2 and transform into a coordinate z yielding
a simple diffusion equation. First, we define another ancillary distribution g(z) such
that the probability of finding a particle in the region (z, z+ dz) is g(z) dz, in analogy
with the original definition of f :

g(z)= f (κ(z))
∂κ

∂z
. (3.11)

Next, we choose the coordinate z such that g(z) is constant at long times. Rearranging
(3.11) and steady-state f in (3.10) immediately gives one possible definition of z as

∂z
∂κ
= (D/Dr

0)
−1/2. (3.12)

When these definitions of z and g(z) are substituted into (3.9), the factors of D in the
diffusive term and ∂D/∂κ in the diffusive drift velocity term are cancelled, resulting
in a simple diffusion equation for g:

∂g
∂t′
=Dr

0
∂2g
∂z2

. (3.13)

Interestingly, recasting (3.9) into a simple diffusion equation requires the relationship
between the diffusive flux term and the diffusive drift velocity term to be what it is
in (3.9). In general, a convection–diffusion equation with a drift velocity that is not
related to a spatially-varying diffusion constant cannot be recast into a simple diffusion
equation via the line of reasoning presented here.

While the coordinate change specified by (3.12) recasts (3.7) into a diffusion
equation, any other coordinate z̃ related to z by z̃ ≡ αz will also do so, with a
different diffusion constant D̃ = Dr

0/α
2; indeed, this is simply a restatement of the

scaling symmetries in a diffusion equation. However, while changing coordinates
can produce any numerical value of D̃, the physical spectrum of time scales will be
independent of these coordinate changes. To find the effective diffusion constant, we



The effect of shear flow on the rotational diffusion of a particle 55

return to the specific case of diffusion on a circle. Equation (3.13) can then be solved
by separation of variables to give

g(z, t)=
∑

m

am exp(imz−Dr
0m2t′). (3.14)

Imposing a single-valuedness condition on g, g(z(κ)) = g(z(κ + 2π)), constrains m
such that mz(κ = 2π)= 2πn, where n is an integer, or m= 2πn/z(κ = 2π). With this
constraint, (3.14) becomes

g(z, t′)=
∑
n∈Z

Anexp(−Dr
0n2t′[2π/z(κ = 2π)] + inz[2π/z(κ = 2π)]). (3.15)

This solution has the same form as the solution to a diffusion equation on a circle, in
a new coordinate z̃≡ z× 2π/z(κ = 2π). In particular, the spectrum of the decay times
is the same as that for diffusion on a circle with diffusion constant:

Dr
eff /D

r
0 =
(

2π

z(κ = 2π)

)2

. (3.16)

Incidentally, this same argument provides the reason for choosing the factor of ū in
the definition of the continuous shear κ in (2.2), since it is the factor of ū that sets
κ(φ = 2π, t= 0)= 2π and gives the correct spectrum of time scales.

Making this coordinate change κ → z transforms (3.7) into a simple diffusion
equation in a more complicated coordinate system. The recast form allows for an exact
solution if the new coordinate z is known and provides additional intuition into the
evolution of the orientation distribution. In general, the new coordinate z(κ) is difficult
to find analytically. However, the coordinate change is simpler to solve numerically
than the full partial differential equation, and (3.8), (3.10) and (3.16) allow for a direct
calculation of the effective diffusion constant and the long-time distributions without
a full determination of z(κ). Moreover, for certain strain amplitudes and oscillatory
waveforms the distribution and effective diffusion can be solved for analytically. We
provide the results of these solutions for triangle-wave shear in the next section.

4. Triangle-wave oscillatory shear solutions
As visible from (3.12)–(3.16), the strain amplitude affects both the dynamics and

the distributions under oscillatory shear. To gain intuition for the role played by
oscillatory strain amplitude, we examine analytically-tractable triangle-wave shear.
We solve for three limiting cases, namely low amplitudes, large amplitudes, and
intermediate resonant amplitudes, and compare the calculations with simulations.
Finally, we compare numerical solutions for Dr

eff and ρ at arbitrary amplitudes with the
results from our simulation before discussing similarities between changing the strain
amplitude and changing the shear rate. We find that changing the strain amplitude
allows for significant control over both the particle orientations and diffusion.

4.1. Triangle-wave oscillatory shear D

The solutions of (3.12)–(3.16) depend on the particular waveform Γ̇ (t) through D(κ).
To gain intuition for the distributions under oscillatory shear, we solve for the simplest
possible waveform: triangle-wave oscillatory shear. Here the waveform is Γ̇ (t)= 1 for
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the first half of a cycle, 0< t< Tcyc/2, and is Γ̇ (t)=−1 for the second half, Tcyc/2<
t< Tcyc. If the peak-to-peak strain amplitude is γ , then Tcyc = γ /γ̇ and D from (3.8)
can be written as

D(κ)/Dr
0 =

γ̇

γ

∫ γ /γ̇

0

(
ū

u(κ + ūτ)

)2

dτ . (4.1)

Since Γ̇ (t) has the same form for the first and second half of each cycle, the
contribution to D from shearing forward is the same as from shearing backward, and
D takes the simple form given above. For the particular rotational velocity field u(φ)
from a Jeffery orbit, D for triangle-wave shear can be solved exactly using (3.6):

D(κ)/Dr
0 =

3
8
(p− 1/p)2 + 1+ 1

4γ
(p2 − 1/p2)

×
{

1
8
(p− 1/p)

[
sin 4

(
κ + γ

p+ 1/p

)
− sin 4κ

]
− (p+ 1/p)

[
sin 2

(
κ + γ

p+ 1/p

)
− sin 2κ

]}
; (4.2)

however, in what follows we will not need to use the complete form of D.

4.2. Small strain amplitudes
We begin by solving (3.12)–(3.16) for both the distributions and the diffusion in the
limit of small strain amplitudes γ � 1, while the strain rate is still large (Pe� 1). By
Taylor expanding the integrands in (4.1) about τ = 0 and integrating, the coordinate
change ∂z/∂κ =√Dr

0/D(κ) can be written as

∂z
∂κ
= u

ū

[
1+ γ

2γ̇
ū
u
∂u
∂κ
+O(γ 2)

]
, (4.3)

where we have also Taylor expanded the inverse square root and truncated both
Taylor series to O(γ 2). Following (3.10) and (3.16) above, we use this coordinate
transformation ∂z/∂κ to find both the distributions and the effective diffusion.

To find the distribution ρ(φ), we substitute (D/Dr
0)
−1/2 from (4.3) above into (3.10):

ρ(φ)∝ 1+ γ

2γ̇
ū
u
∂u
∂κ
+O(γ 2). (4.4)

Further manipulation can eliminate the κ dependence in this equation. The derivative
ū/u × ∂u/∂κ can be written in terms of the divergence of the velocity by writing
∂u/∂κ = ∂u/∂φ× ∂φ/∂κ and using ∂φ/∂κ = u/ū, cf. (3.2). Since ∂u/∂φ=∇ · u, this
substitution with the appropriate normalization constant gives ρ at the start of a cycle
as

ρ(φ)= 1
2π

[
1+ γ

2γ̇
∇ · u

]
= 1

2π

[
1− γ

2
p2 − 1
p2 + 1

sin 2φ
]
+O(γ 2), (4.5)

where we have used the definition of u from the Jeffery orbit, (2.1).
To find the effective diffusion, we first find z(κ = 2π) by integrating (4.3) over

κ = (0, 2π). The O(1) term in z(2π) is simply 2π, since the integral of u over a
period is 2πū by definition. For the O(γ ) correction to z(2π) from (4.3) and (3.16),
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FIGURE 3. (Colour online) Small-amplitude oscillatory shear orientation distributions, for
particles with aspect ratio p= 2.83 at Pe= 104. (a) The distribution ρ(φ) from simulation
at a strain amplitude of γ = 0.3. (b) The corrections to the distribution δρ ≡ ρ(φ)− 1/2π
as measured from simulation, for strain amplitudes ranging from γ = 0.02 (innermost red
curve) to γ = 2.0 (outermost blue curve), with four curves equally spaced in γ highlighted
in black. At amplitudes near γ = 2, higher-order corrections cause the distribution to
move away from 45◦ extensional axes. The circular gridlines are spaced at separations
of δρ = 0.5/2π, with the second gridline corresponding to δρ = 0; the radial gridlines
are equally spaced in φ. (c) Log–log plot showing the maximal deviation ρ–ρ0 of the
simulated distributions from the zero-amplitude distribution (upper red curve) and the
maximal deviation ρ–ρ1 from the first-order correction (lower green curve), as a function
of γ . The second-order corrections are about 20 % of the first-order correction at γ = 1.

the additional integral is ∝∫ 2π

0 (∂u/∂κ) dκ , which is zero since u is periodic in κ .
Substituting these values of z(κ = 2π) into (3.16) shows that to O(γ ), the diffusion
is not enhanced:

Dr
eff =Dr

0 +O(γ 2). (4.6)

In the limit of γ → 0, both the distributions and the diffusion remain unchanged
from their zero-shear value, despite the strain rate dominating over diffusion (γ̇ �
Dr

0). In this limit, the frequency of the shear is large compared to the rotary diffusion.
The distribution remains isotropic because the flow oscillates so rapidly that diffusion
cannot alter the distribution at all over a cycle. Similarly, since the portion of the
Jeffery orbit traversed by a given particle is so small, over one cycle the particle does
not explore the varying rotary velocities needed to enhance the diffusion. As a result,
the diffusion remains at its equilibrium value and is not enhanced.

As γ is increased, the particles start to sample more of the Jeffery orbit. At
these larger amplitudes, enough of the Jeffery orbit is traversed where it can interact
with diffusion. This interplay results in an O(γ ) correction to the distribution, (4.5).
Physically, the form of the distribution arises because the Jeffery orbit starts to
align the distribution. Since the flow oscillates too fast for the distribution to align
completely, the result is a partial alignment along the extensional axis, where the
stretching due to the Jeffery orbit is largest. Interestingly, this ∝ sin 2φ correction to
the distributions for large Pe and low γ is the same form as the correction to the
continuous shear distribution at low Pe and large γ , cf. Peterlin (1938), Kim & Fan
(1984), Stasiak & Cohen (1987) and Strand et al. (1987). However, this similarity is
somewhat coincidental as it depends on the form of u. There is excellent agreement
between the predictions for the distributions and our simulations, as shown in figure 3.

In contrast, due to symmetry the diffusion constant is only enhanced at O(γ 2),
cf. (4.6). The diffusion constant Dr

eff describes the long-time orientation dynamics;
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thus Dr
eff must be symmetric under a reversal in the flow direction. Since reversing

the flow direction corresponds to changing γ → −γ and φ → −φ, Dr
eff cannot be

enhanced at O(γ ); the quadratic increase of Dr
eff with γ is shown in the inset to

figure 5(a). The distributions, on the other hand, depend on both γ and φ and
therefore can have an O(γ ) correction while still respecting this symmetry.

4.3. Intermediate resonant amplitudes
By noting other symmetries of oscillatory shear and the Jeffery orbits, we can
find another solution to the oscillatory shear equations. The Jeffery rotary velocity
field repeats itself after half an orbit, as visible from (1.1) and figure 1. Thus, a
particle starting at a given orientation samples the same velocities whether it is
sheared forwards or backwards for half an orbit. This symmetry is reflected in
the triangle-wave D(κ) in (4.2): at resonant strain amplitudes γr ≡ nπ(p + 1/p)
corresponding to half a Jeffery orbit, D(κ) takes its constant continuous shear value.
As a result, at half-integer Jeffery orbit amplitudes, triangle-wave oscillatory shear
is exactly the same as continuous shear, with the same distributions and diffusion
constant.

Since (3.7) and (4.1) are considerably simplified at resonance under triangle-wave
shear, they allow for a perturbative treatment near γr. The procedure is similar to
the low-amplitude strain treatment outlined above, except here the small parameter
is the difference δγ from a resonant strain amplitude γr; i.e. γ = γr + δγ . Since
resonant amplitude shear is similar to continuous shear, the distribution is simplest
in the continuous shear coordinate κ . To first order in δγ , the ancillary distribution
f (κ) and the diffusion are

f (κ)= 1
2π

{
1+ δγ

γr

[
λ

1+ λ2/2
cos(2κ)− λ2

4(1+ λ2/2)
cos(4κ)

]}
+O(δγ 2), (4.7)

Dr
eff /D

r
0 = 3

8(p− 1/p)2 + 1+O(δγ 2). (4.8)

Like the low-amplitude case, the distributions change to first order in δγ , and the
diffusion does not change until O(δγ 2). However, unlike the low-amplitude case, the
correction to the distribution is not a single harmonic, but it is composed of two
harmonics in the stretched κ-space. These predictions are compared against simulation
results in figure 4 for the distributions and figure 5(a) for the diffusion. While figure 4
only compares the simulated and predicted distributions near the first resonant peak
for a single aspect ratio, we find good agreement between (4.7) and (4.8) and the
simulation over a range of both aspect ratios and resonant amplitudes.

4.4. Very large amplitudes
Since continuous shear can be thought of as triangle-wave oscillatory shear with
infinite strain amplitude, we expect that at very large amplitudes the distributions only
vary slightly from the continuous shear distributions. This approach to continuous
shear can be seen directly from (4.1) and (4.2). The function D(κ; γ ), which
determines both Dr

eff and ρ, is an average value of a periodic function where
the strain amplitude γ sets the range of the integration. As γ is increased, more
and more periods of the integrand are averaged over, and D(κ) approaches its
infinite-period average value of the continuous shear Dr

eff from (2.15). In the limit of
infinite amplitude, the oscillatory shear equation (3.7) becomes the continuous shear
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FIGURE 4. (Colour online) Oscillatory shear orientation distributions for particles with
aspect ratio p = 2.83 (i.e. Jeffery orbit period γ̇TJO = 20) at Pe = 104 and a strain
amplitude near the first resonance. (a) The ancillary distribution f (κ) from simulation at
a strain amplitude of γ = 10.6; note the small bias away from the flow direction. (b) The
difference between the continuous shear f and that measured from simulation, for positive
distances from resonance δγ = 0 (innermost red curve) to δγ = 1.0 (outermost blue curve),
with four curves equally spaced in δγ highlighted in black. The circular gridlines are
spaced at intervals of δf = 0.15/2π, with the second gridline corresponding to δf = 0. The
radial gridlines are equally-spaced in φ (not κ). (c) Log–log plot showing the maximal
deviation f –f0 of the ancillary distribution from the continuous shear f (upper red curve)
and the maximal deviation f –f1 from the first-order correction (lower green curve), as a
function of δγ . The second-order corrections are about 20 % of the first-order correction
at δγ = 0.4.

equation (2.13). Examining the many-cycle averages in (3.8) shows that the difference
between D(κ; γ ) and the continuous shear limit decreases as ∼1/γ , which is echoed
by the distributions near resonance in (4.7). Both empirically and by analytically
evaluating the many-cycle averages, we find that Dr

eff approaches its continuous shear
value like ∼1/γ 2, faster than the distributions do.

4.5. Arbitrary amplitudes
The oscillatory shear equations (3.12)–(3.16) give predictions for Dr

eff and the
distributions at all amplitudes, not just at the ones treated perturbatively above.
We find the effective diffusion and distributions at arbitrary amplitudes by evaluating
(3.10) and (3.16) numerically for triangle-wave shear. Since oscillatory shear can also
be used to control the alignment of colloidal rods, we quantify ρ via the liquid crystal
scalar order parameter S which captures the degree of total alignment irrespective
of the direction. The order parameter S is defined as the largest eigenvalue of the
traceless orientation tensor Q; in two dimensions Q is defined as Q = 2〈nn〉 − δ,
where δ is the identity tensor and n the orientation unit normal. For an isotropic
distribution, S = 0; for a perfectly aligned distribution, S = 1. Figure 5 compares
these predicted values (green lines) of Dr

eff , (a), and S, (b), versus γ against those
measured from simulation (red dots). We find excellent agreement between this
semi-analytic theory and full numerical simulations for both the diffusion coefficients
and distributions, both for the aspect ratio p = 2.83 shown in figure 5 and over
a range of aspect ratios (not shown). The diffusion increases gradually from its
zero-amplitude value Dr

eff /D
r
0= 1, reaching the continuous shear value at the resonant

amplitude γr. At higher amplitudes, the diffusion undergoes damped oscillations with
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FIGURE 5. (Colour online) (a) Oscillatory shear diffusion Dr
eff versus γ for particles

with aspect ratio p≈ 2.83, as calculated from (3.16) (green line) and as measured from
simulation at Pe= 104 (red circles). The results from simulation and from (3.16) are the
same to the resolution of the plot. The oscillations in the diffusion constant with increasing
strain amplitude are clearly visible. Inset: Dr

eff /D
r
0 at low amplitudes. (b) The liquid crystal

order parameter S versus γ at the start of a shear cycle for particles p≈ 2.83, as predicted
from (3.10), green line, and measured from simulation at Pe= 104, red dots. At zero strain
amplitude the distribution is randomly aligned (S = 0); with increasing strain amplitude
the distribution becomes more aligned, with maximum alignment at γ = 6. Inset: S at low
amplitudes. In the main panels of both (a) and (b) only 1 % of the simulated points are
plotted to avoid overcrowding.

γ , asymptotically approaching its continuous shear value at large strains. In contrast,
the order parameter S increases from 0 linearly with γ when γ is small. Moreover,
S is not maximal at the resonant amplitudes, but is instead maximal at an amplitude
slightly below the first resonance. The order parameter then decreases slightly to its
continuous shear value, with damped oscillations at larger γ .

5. Rheology

The orientation distribution of axisymmetric particles affects the suspension
rheology. In the dilute limit, the additional deviatoric stress σ p due to the particles is

σ p = 2ηc
{

2AH (E : 〈nnnn〉 − δE : 〈nn〉)
+ 2BH

(
E · 〈nn〉 + 〈nn〉 · E − 2

3δE : 〈nn〉)
+ CHE + FHDr

0

(〈nn〉 − 1
3δ
)}

(5.1)

where η is the solvent viscosity, c is the volume fraction of particles, E is the far-field
rate-of-strain tensor of the fluid, δ is the identity tensor, and AH, BH, CH and FH are
hydrodynamic coefficients (Jeffery 1922; Batchelor 1970; Hinch & Leal 1972; Brenner
1974; Shaqfeh & Fredrickson 1990; Kim & Karrila 2005). The terms ∝E result from
the additional hydrodynamic resistance due to the particles, which depends on the
particles’ specific orientations through the average tensors 〈nn〉 and 〈nnnn〉. The final
term ∝ FHDr

0 is an additional stress due to Brownian rotations of the rods. If the
distribution of rods is not isotropic, these Brownian rotations result in a net stress.



The effect of shear flow on the rotational diffusion of a particle 61

As the particle orientations and thus the tensors 〈nn〉 and 〈nnnn〉 couple to the
flow, even a dilute suspension of elongated particles has a non-Newtonian rheology.
Since 〈nn〉 and 〈nnnn〉 are in general not multiples of the identity, (5.1) generically
predicts normal stresses. Moreover, both the normal stresses and shear stresses display
transients before reaching their steady-state values, which in turn depend on the shear
rate.

These effects have been well-studied for steady-state distributions, over a range of
Péclet numbers and particle aspect ratios from theory (Peterlin 1938; Leal & Hinch
1971; Hinch & Leal 1972; Leal & Hinch 1972; Hinch & Leal 1976; Stasiak & Cohen
1987; Strand et al. 1987), experiments (Bibbo, Dinh & Armstrong 1985; Jogun &
Zukoski 1999; Brown et al. 2000; Petrich, Cohen & Koch 2000; Chaouche & Koch
2001), and simulations (Scheraga 1955; Stewart & Sorensen 1972; Strand et al. 1987).
Less is known about the rheology of rod suspensions in time-dependent flows at high
Pe. Hinch & Leal (1973) made qualitative arguments describing the stress oscillations
with time in a rod suspension; there have also been several simulations of the time-
dependent orientation distributions, e.g. Férec et al. (2008) and Eberle et al. (2010),
that also examined transient stresses. Our theory of rod dynamics builds on these
results by providing a quantitative physical picture of the unsteady rheology of a
suspension of rods at high Pe, albeit with orientations confined to the flow–gradient
plane.

5.1. Rheological transients during startup shear
From (2.13) and (5.1) we calculate the shear stress of the suspension of ellipsoidal
particles during the startup of shear, for two suspensions with aspect ratios p= 2.83
and p= 5.00 at Pe= 104. The orientation distribution starts out isotropically oriented.
When the flow starts, the ellipsoids start to tumble in periodic Jeffery orbits, resulting
in the large-scale periodic oscillations in the shear stress (figure 6a). These oscillations
slowly damp out with time as the enhanced rotational diffusion brings the orientation
distribution to steady state. Since the diffusion is enhanced ∼p2 for large p, the
oscillating stress for p = 5.00 damps faster than the oscillating stress for p = 2.83.
At very short times, two additional small peaks in the stress are visible in these
oscillations. However, this stress feature decays extremely rapidly: even at a large
Pe= 104, it disappears before half a Jeffery orbit for p= 5.00.

To understand the origins of these two types of temporal oscillations in the shear
stress shown in figure 6(a), we examine (5.1) term by term. For large shear rates, the
last term ∝Dr

0 is negligible compared to the other terms ∝E , being smaller by a factor
of 1/Pe. The third term CHE is independent of time, since the strain rate E is fixed.
For orientations confined to the flow–gradient plane, the second term’s contribution
to the shear stress is also independent of time, since 2(E · 〈nn〉 + 〈nn〉 · E)xy =
〈n2

x + n2
y〉 = 1. Thus, at high Pe, only the first term ∝E : 〈nnnn〉 in (5.1) contributes

significantly to the time-dependent shear stress. This term provides an additional
shear stress (〈nnnn〉 : E)xy = 〈1 − cos 4φ〉/8 that is largest at the four orientations
along the principle strain axes, φ = (n/2 + 1/4)π. Likewise, the stress term is
minimal at four orientations that occur when the particle is either aligned with the
flow or perpendicular to the flow, φ = nπ/2. Thus the time-varying suspension
stress arises from the interplay between the time-varying distributions and the
orientation-dependent stress term (1− cos 4φ)/8.

As discussed in § 2, the evolution of the orientations is simplest in the stretched
coordinate κ . In this coordinate space, the orientation-dependent stress term (1 −
cos 4φ)/8 is bunched in κ and moves with a constant velocity ū = γ̇ /(p + 1/p).
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FIGURE 6. (Colour online) (a) The additional suspension stress σ p
xy/ηcγ̇ under continuous

shear, normalized by the solvent viscosity, shear rate magnitude, and aspect ratio, as a
function of dimensionless time γ̇ t. The stress for two suspensions at Pe= 104 are shown:
with aspect ratios p = 2.83 (blue) and p = 5.00 (orange). (b) The orientation-dependent
stress term (1− cos 4φ)/8 as a function of κ for p= 5.00. The stress term translates with
time, as shown by the centred bright orange curve at ūt= 0 and the shifted drab orange
curve at ūt= 0.4π. The double-peaks in the stress term are separated in κ by a distance
that scales as ∼1/p when p is large. (c) The ancillary distribution f (κ), at two times:
immediately after startup (black line) and at a time slightly after the double peaks have
disappeared (grey line). (d) The times for the double peaks (magenta) and single peaks
(cyan) to decay, as a function of aspect ratio. The decay times follow the ∼1/Dr

0p4 and
∼1/Dr

0p2 large-p scalings, respectively, shown in the dotted lines.

The four maximal stress orientations φ = (n/2 + 1/4)π are mapped to κ + ūt =
tan(±1/p) and tan(±1/p) + π, creating a double-peak in the stress term whose
separation decreases as 1/p when p is large, cf. (2.2) and figure 6(b). For an initially
isotropic suspension, the ancillary distribution f (κ) starts out tightly peaked and
evolves diffusively to a constant value, figure 6(c). The resulting suspension stress
arises from the average of the product of the κ- and t-dependent stress term and the
time-dependent distribution f (κ).

On short times, the ancillary distribution f remains essentially constant while the
stress term translates in κ . At time t = 0, the double peaks in the stress term are
centred around the highly peaked initial distribution, which creates a relatively high
stress as illustrated by figure 6(a–c). After a short time ∼1/γ̇ , the stress term has
moved to the left by the small amount ∼1/p, and f centres on one peak of the
stress term. This large overlap produces the short-lived increase in the suspension
stress occurring immediately after startup in figure 6(a). At a slightly later time ∼p/γ̇ ,
the stress term progresses further to the left by an amount ∼O(1), as shown by the
drab orange curves, and the troughs in the stress term align with the peaks of f (κ),
giving rise to the large single troughs in the suspension stress. As the shear continues,
the double peak of the stress term moves half a period and realigns with f (κ). This
realignment produces the observed double peaks in the stress, and the cycle repeats.

On longer time scales, the enhanced diffusion starts to broaden the ancillary
distribution. As f (κ) broadens, it simultaneously samples multiple regions of the
orientation-dependent stress term, and features in σ p

xy(t) start to disappear. The first
to disappear is the double-peak in the suspension stress. When f has broadened by
the ∼1/p separation between the double-peaks in the stress term, figure 6(c), both
the double peaks and the single trough between them are sampled simultaneously,
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FIGURE 7. (Colour online) (a) The normalized additional suspension shear stress σ p
xy/ηcγ̇

as a function of time for triangle-wave oscillatory shear at amplitude γ = 5.0. We define
the effective viscosity [ηeff ] as the average of this varying stress over one cycle (dashed
black line in inset); the additional variation in the stress we quantify by range of the
normalized stress over one half-cycle (grey band in inset). (b) The oscillatory shear
effective viscosity [ηeff ] as a function of γ . (c) The range of the normalized suspension
stress as a function of γ ; it is always small compared to [ηeff ].

and the double-peaks in σ p
xy(t) become blurred into a single peak. Diffusion broadens

f (κ) by this ∼1/p amount after a time ∼(1/p)2/Dr
eff ∼ 1/Dr

0p4 for large p. Even with
moderate aspect ratios at high Pe, the decay of the double-peaks in the suspension
stress onsets extremely quickly: at Pe= 104 and p= 5.0 in figure 6(a), the peaks have
disappeared before the first half Jeffery orbit. Beyond this time scale, the suspension
stress continues to oscillate but only with a single-peaked structure. These single
peaks in turn disappear after f (κ) broadens by an O(1) amount and samples the
entirety of the stress term simultaneously. This O(1) broadening only occurs after a
much longer time ∼1/Dr

eff ∼ 1/Dr
0p2 for large p.

The aspect ratio dependence of these two decay times is shown in figure 6(d). To
verify the predicted large aspect ratio scaling, we evaluated the stress from (5.1) using
the distributions predicted by the continuous shear theory, (2.13) and § 2. We define
the double-peak disappearance time as the time when the stress at a half-integer
Jeffery orbit switches from a local minimum to a local maximum, and we define the
single-peak disappearance time as the time when the amplitude of the double-peaks
decays to 1/e of its initial value, as described in detail in appendix B. We find good
agreement between the simulated time scales and those predicted from the scaling
argument above (figure 6d). These two time scales ∼1/Dr

0p4 and ∼1/Dr
0p2, first

noticed by Hinch & Leal (1973), both arise from the mixing of the phase angle in
the Jeffery orbit. For orientations in three dimensions, there will be additional time
scales associated with the relaxation of the orbit constants.

5.2. Overview of triangle-wave oscillatory shear rheology at long times t� 1/Dr
eff

A representative shear stress signal during one cycle of oscillatory shear is plotted
in figure 7(a), for spheroids with aspect ratio p = 2.83 and peak-to-peak strain
amplitude γ = 5, after f (κ) has reached steady state. Although the transients of the
orientation distribution have decayed, ρ still oscillates with the period of one cycle.
This oscillation in ρ modulates the stress over one half-cycle (figure 7a inset), and
strictly there is no effective viscosity for a rod-like suspension under oscillatory
shear. Nevertheless, since the variations in the stress are small, it is convenient to
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describe the stress response under oscillatory shear with its value averaged over
a half-cycle. To this end, we define the ‘effective intrinsic viscosity’ [ηeff ] of the
suspension as the additional shear stress due to the ellipsoids normalized by the
solvent viscosity, particle volume fraction, and shear rate, σ p

xy/(ηcγ̇ ), and averaged
over a half-cycle. The slight variation of the suspension stress we quantify by the
range of the normalized stress over one-half cycle, shown in figure 7(c).

As is the case for continuous shear, the interplay between the orientation distribution
and the stress term (E : nnnn)xy = (1 − cos 4φ)/8 determines the oscillatory shear
rheology. However, there are a few differences between the procedure for understanding
the suspension stress under oscillatory shear and under continuous shear. First, the
stresses in the first and second half-cycle have the same magnitude, so we only
examine the stress during the first half-cycle. Second, since diffusion is weak
(Dr

effγ /γ̇ � 1), f (κ) is constant throughout a cycle, and only the motion in κ of
the stress term produces a time-dependent suspension stress. Third, the change in
the long-time f (κ) with strain amplitude effects a change in the suspension stress
with γ . Fourth, due to its amplitude-dependent displacement ūγ /γ̇ the motion of the
stress term (1 − cos 4φ)/8 produces an additional γ dependence in the suspension
stress. By examining in this way the overlap between the ancillary distribution f (κ)
and the orientation-dependent stress term (E : nnnn)xy(κ + ūt), we can reconstruct the
suspension stress during one cycle of triangle-wave oscillatory shear and understand
the oscillatory shear rheology shown in figure 7. Rather than laboriously examine each
amplitude in the figure, we now examine three salient amplitude regions of interest:
(i) low amplitudes γ � 1, (ii) the strain amplitude with the maximal viscosity γ ≈ 1.7,
and (iii) amplitudes near resonance γ ≈ γr.

5.3. Low amplitude [ηeff ]
For γ → 0, the orientation distribution is isotropic, cf. (4.5), and σ p(t) is the same
as in an isotropic distribution at shear startup. For finite but low amplitudes, the
suspension stress is constant during each half-cycle at O(γ ), figure 8(a). During each
half-cycle of shear, the stress term moves by a small displacement ūt = ūγ /γ̇ , as
shown in figure 8(b). In addition, f (κ) shifts from its zero-amplitude value (vertical
line) as γ increases, figure 8(c). This shift can be seen from (3.10) and (4.3): f at
small amplitudes is the first-order term in a Taylor series in γ of an initially isotropic
distribution f0(κ) shifted in κ by half the displacement of the stress term:

f (κ)= f0

(
κ + γ ū

2γ̇

)
+O(γ 2). (5.2)

Thus, to first order in γ the centre of the stress term oscillates about the centre
of f . Since both f and the stress term are constant to first order in κ about their
centres, σ p(t) changes from its zero-amplitude value only at O(γ 2) during the cycle.
The displacement of f in κ-space corresponds to a distribution ρ(φ) at the start of
a cycle that is larger along the flow’s compressional axis and is smaller along the
extensional axis, reversing as the flow oscillates, cf. figure 3. The increase in the stress
from orienting particles along the extensional axis at φ=π/4 is exactly cancelled by
the particle reorientation away from the compressional axis.

5.4. Amplitude resulting in maximal [ηeff ]
Despite the lack of an exact analytical solution for the distributions at arbitrary
amplitudes, we can qualitatively understand the existence of a maximum in [ηeff ].
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FIGURE 8. (Colour online) Low-amplitude γ = 0.3 oscillatory shear rheology for a dilute
suspension of particles with aspect ratio p = 2.83 confined to the flow–gradient plane.
(a) The normalized additional suspension stress σ p

xy/η0cγ̇ as a function of dimensionless
time γ̇ t throughout one cycle of oscillatory shear, with a closeup of the stress during
the first half cycle in the inset. (b) The orientation-dependent stress term (E : nnnn)xy
as a function of κ . The stress term starts with its minimum centred at κ = 0, shown
as the centred (right) curve in light blue. During the cycle, the Jeffery orbit advects the
stress term through the lightly shaded region. At the end of the half-cycle, the stress term
reaches its final position, shown as the shifted (left) curve in dark blue. (c) The ancillary
distribution f (κ). The shaded region denotes the area swept out by the centre of the stress
term. The peak of f (κ) is shifted from κ = 0 to the centre of the region that the stress
term sweeps out during a cycle.

As shown above, for small amplitudes f (κ) shifts as γ increases but is otherwise
unchanged. This shift suggests a mechanism for the maximal [ηeff ]. As f (κ) is shifted
by a larger amount, eventually its peak is centred on one peak in the stress term,
producing a large suspension stress at the cycle’s start. During the cycle, the stress
term translates until its trough and then second peak overlap with f , creating first
a slightly lower stress before another large stress again at the end of the half-cycle,
similar to the double-peaks in the stress under continuous shear. This translation of
f corresponds to a distribution ρ(φ) that is isotropic at the centre of the cycle, but
is nonlinearly distorted by the Jeffery orbit to orient more particles along the flow’s
extensional axis than are removed from the compressional axis, cf. the γ ≈ 2 contours
in figure 3. This double-peak structure in the suspension stress and the shifted f (κ)
are borne out in figure 9(a,b). Since σ p(t) increases at the ends of the cycle, [ηeff ]
increases from its zero-amplitude value, and the range of the stress is non-zero. While
the argument captures the essence of the occurrence of a maximal viscosity, there are
higher-order corrections in γ to f that cause the suspension stress to deviate slightly
from the expected results.

The argument above suggests a scaling with aspect ratio for the strain amplitude
resulting in a maximal viscosity. As visible from the definition of κ in (2.3), the
separation between the double-peaks in the stress term scales as ∼1/p for large p.
From (5.2), the small-amplitude correction to the ancillary distribution shifts f by an
amount ∼γ /p, since ū/γ̇ = 1/(p+ 1/p). Thus, at a strain amplitude γ ∼ 1 independent
of p, the peak of f is roughly centred on one of the peaks in the stress term. As
a result, the amplitude producing the maximal viscosity should be independent of
the particle aspect ratio p. This prediction is verified in figure 9(d). The amplitude
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FIGURE 9. (Colour online) Oscillatory shear rheology at the strain amplitude γ = 1.67
resulting in maximal viscosity for a dilute suspension of particles with aspect ratio
p = 2.83. (a) The additional suspension stress as a function of dimensionless time γ̇ t
throughout the cycle. (b) The stress term (E : nnnn)xy as a function of κ . The stress term
starts with its minimum centred at κ = 0, shown as the centred (right) curve in light blue.
During the first half-cycle, the Jeffery orbit advects the stress term through the lightly
shaded region until it reaches final position, shown as the shifted (left) curve in dark blue.
(c) The ancillary distribution f (κ); the shaded region denotes the area swept out by the
centre of the stress term. (d) Semi-log plot of the strain amplitude resulting in the maximal
viscosity versus p.

resulting in the maximal viscosity is practically constant with p, varying by less than
10 % from γ ≈ 1.6 at an aspect ratio p= 2 to its asymptotic value γ ≈ 1.74 at p= 100.

5.5. Resonant amplitude [ηeff ]
For resonant amplitudes γ = γr corresponding to half a Jeffery orbit period, the
ancillary distribution does not vary with κ: f (κ) = 1/2π. As the stress term moves
during the cycle, its overlap with the constant f does not change, and the suspension
stress remains constant during the cycle. A constant f (κ) corresponds to a distribution
ρ(φ) that does not change with time due to the Jeffery orbit, resulting in a suspension
stress that is constant during a cycle. Thus, the resonant f (κ) yields the same
suspension stress and [ηeff ] as for continuous shear at long times.

For amplitudes slightly away from resonance γ = γr + δγ , the suspension stress
changes at O(δγ ), as shown in figure 10. The first-order correction to f (κ) indicates
that additional particles are oriented along the maximal stress directions. As a result,
the suspension stress at the start of a cycle for amplitudes near resonance is O(δγ )
larger than the suspension stress at resonant amplitudes γr. As the stress term moves,
at the centre of the cycle it centres on regions where f (κ) is less than its resonant-
amplitude value, which decreases the suspension stress. Thus, the range of the stress
increases linearly with δγ , figure 7(c). However, since the effective intrinsic viscosity
[ηeff ] is an average of the suspension stress, the oscillations during one half-cycle
cancel out, and [ηeff ] remains the same as at resonance, as shown by the smooth
minima in figure 7(b).

6. Conclusion and discussion
In the preceding pages, we have solved for the time-dependent orientation

distribution of rod-like particles under shear. Under continuous shear, the convection–
diffusion equation is greatly simplified by a change of coordinates φ → κ that
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FIGURE 10. (Colour online) Oscillatory shear rheology for an aspect ratio p= 2.83 and
an amplitude γ = 10.6 slightly above resonance. (a) The normalized additional suspension
stress σ p

xy/η0cγ̇ as a function of dimensionless time γ̇ t throughout one cycle of oscillatory
shear. (b) (E :nnnn)xy as a function of κ . The stress term starts with its minimum centred
at κ = 0, shown as the centred (right) curve in light blue, and is advected by the Jeffery
orbit through the lightly shaded region. Since γ = 10.6 is slightly above resonance, the
stress term translates by more than half a period and ends at the final position shown as
the shifted (left) curve in dark blue. (c) The ancillary distribution f (κ). The shaded region
denotes the area swept out by the centre of the stress term, with the darkly shaded region
illustrating the regions where the minimum in the stress term has traversed twice.

removes the rotation of the Jeffery orbit. This coordinate transformation complicates
the diffusion term, but allows it to be treated perturbatively with a method of
averages, similar to that used for certain nonlinear ordinary differential equations
(Sanders, Verhulst & Murdock 2000) or for homogenization methods for effective
medium properties (Bakhvalov & Panasenko 1989; Cioranescu & Donato 1999).
The convection–diffusion equation cleanly maps to a simple diffusion equation
in the new coordinate, with an enhanced diffusion that depends on averages of
the rotational velocity field: Dr

eff = Dr
0〈(ū/u)2〉. For particles rotating in a Jeffery

orbit, the diffusion under continuous shear is enhanced as ∼p2 when p is large.
Since the orientation dynamics are an exact diffusion equation in the stretched
κ-coordinate at high Pe, a complete solution for any initial distribution can be easily
constructed, and all initial distributions relax to a constant ancillary distribution in the
κ-coordinate. This steady-state ancillary distribution is the two-dimensional analogue
of the three-dimensional steady-state solution found by Leal & Hinch (1971).

Under oscillatory shear, a particle does not sample all orientations during each
cycle. As a result, the effective diffusion in the κ-coordinate is an average over
the regions the particle does sample, instead of an average over the entire Jeffery
orbit. Since different particles sample different regions during a cycle, the effective
diffusion changes with orientation κ . This varying diffusion causes particles to
drift away from the continuous shear distribution, changing f from its continuous
shear form. As a result of the orientationally-dependent diffusion, the orientation
dynamics in κ-space become complicated. However, it is always possible to map
the κ-dynamics under oscillatory shear to a simple diffusion equation in a new
coordinate z. Once this mapping is known, a full time-dependent solution for the
distributions under oscillatory shear is easily constructed. While the coordinate
change κ→ z cannot in general be solved analytically, it can be treated perturbatively
at certain amplitudes, particularly for triangle-wave shear, or solved numerically. The
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solutions for triangle-wave shear show that, for small strain amplitudes γ � 1, the
orientation distribution remains isotropic and the rotational diffusion is not enhanced.
Moreover, the distributions when γ � 1 at large Pe take the same form as the
distributions when Pe � 1 at large γ . At resonant amplitudes corresponding to
half-integer Jeffery orbits, the orientation dynamics map exactly to the continuous
shear orientation dynamics, providing the same effective diffusion constant and
orientation distribution.

Since the moments of the orientation distribution determine the suspension rheology,
the solutions for the orientation distributions allow for a detailed understanding
of the suspension shear stresses. Examining the time evolution of the overlap
between the orientation-dependent stress term E : nnnn and the ancillary distribution
f (κ) quantitatively explains all the features in both the continuous and oscillatory
shear suspension rheology. In particular, our formalism demonstrates the existence
of two diffusive time scales in the continuous shear rheology, and predicts an
amplitude-dependent effective intrinsic viscosity under oscillatory shear.

6.1. Comparison to Taylor dispersion
Our approach of mapping the rod dynamics to an effective diffusion equation is
reminiscent of Taylor dispersion. The canonical Taylor dispersion was calculated by
Taylor for Poiseuille flow in a circular pipe (Taylor 1953, 1954). As the non-uniform
flow in the pipe moves different solute parcels at different speeds, the solute
spreads out along the axial direction while diffusion erases the flow-induced radial
inhomogeneity. Taylor realized that this combination of diffusion and differential
advection maps to a simple diffusion equation along the pipe’s axis, with a greatly
enhanced effective diffusion constant. This result is reminiscent of the rotational
dynamics discussed above: the combination of diffusion and differential rotation due
to the Jeffery orbit maps to a simple diffusion equation. A natural question to ask is
whether the enhanced rotational diffusion is simply a modified Taylor dispersion, or
whether it is only similar.

The most general formulation of Taylor dispersion was realized by Howard Brenner
and others in the 1980s (Frankel & Brenner 1989). He viewed the essence of Taylor’s
method as examining long times where the distribution is equilibrated in a small
subspace q (e.g. the cross-section of the pipe) to allow for simple calculations
of behaviour in other, larger subspaces Q (e.g. along the axis of the pipe). This
abstraction of Taylor dispersion to arbitrary spaces allows for a rigorous, clean
calculation of long-time behaviours. In addition to describing the original Taylor
dispersion problem, Brenner and others used this insight to understand the dynamics
of seemingly disparate systems, such as the sedimentation velocity of a non-spherical
particle (Brenner 1979) or of a cluster of particles (Brenner, Nadim & Haber 1987),
as well as for more intractable problems such as Brownian motion of particles under
shear flow (Leighton 1989; Frankel & Brenner 1991, 1993).

However, the orientation dynamics described in the current paper do not fit simply
into the canonical generalized Taylor dispersion picture. In the generalized Taylor
dispersion picture, there are two separate positional subspaces q and Q. In the
rotational dynamics calculated in this paper, there is only one positional subspace,
corresponding to the angular coordinate φ or κ . Thus, Brenner’s approach will not
work for the problem of rotational diffusion. In part, this limitation arises from
the nature of the rotary velocity field and the diffusion. In Taylor dispersion, the
enhanced diffusion arises from Brownian motion perpendicular to the rotary velocity
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field. In the enhanced rotational diffusion calculated here, the enhancement arises
from Brownian motion parallel to the rotary velocity field, and the varying velocity
along the streamline enhances the rotational diffusion. In contrast, in traditional
Taylor dispersion diffusion parallel to streamlines does not enhance dispersion, since
the fluid flow is presumed incompressible.

While our analysis for the evolution of the orientation distribution equations does
not fit neatly into Brenner’s generalized Taylor dispersion, there are still some
mathematical similarities between the two. Instead of integrating over a small
positional subspace q, the analysis in this paper proceeds by integrating over a
short time, either one period of a Jeffery orbit or one oscillatory cycle. It is this step
that allows for a mapping to a diffusion equation, as it is the small subspace step
that allows generalized Taylor dispersion to map complicated dynamics to simpler
equations.

6.2. Applicability to particle orientations in three dimensions
The analysis presented above is for particle orientations confined to the flow–gradient
plane. A natural question to ask is how relevant these results are for real particle
orientations in three dimensions. Previous work by Hinch & Leal (1973) has
investigated theoretically how the orientation dynamics of a suspension of rod-like
particles changes due to shear. While the analysis of the full three-dimensional
problem proved intractable, they were able to make scaling arguments based on
generic properties of the orthogonal eigenfunctions of the convection–diffusion
operator. From these arguments, they surmised that there were two time scales
in the orientation dynamics: a ∼1/Dr

0p2 time for the orbit constant relaxation and
a ∼1/Dr

0p4 time for the phase-angle relaxation. In § 5, we find the same two time
scales for the orientation dynamics in the continuous shear rheology but strictly
for the phase-angle relaxation, as the orbit constant is fixed for particles in the
flow–gradient plane. There is one time scale, ∼1/Dr

0p2, for the phase angle to relax
over the full range of the κ-coordinate. However, a secondary time scale ∼1/Dr

0p4 is
produced since the κ-coordinate stretches the φ-coordinate by an amount ∼p near the
flow direction. Thus, our solution shows there are two time scales in the phase-angle
dynamics, instead of the one suggested by Hinch & Leal (1973). This nuance in the
two-dimensional dynamics suggests that a full solution for freely rotating particles
would provide additional insight into the orientation dynamics.

When the orientations are not confined to the flow–gradient plane, diffusion
randomizes both the Jeffery orbit’s phase angle and its orbit constant. If the orbit
constant is fixed, diffusion randomizes the phase angle via the same mechanism
described in this paper for particles confined to the flow–gradient plane. Indeed,
simply substituting the Jeffery orbit velocity u for a fixed orbit constant into (2.13)
provides an effective phase-angle diffusion for any Jeffery orbit. It might be hoped
that a full three-dimensional solution could be created by combining this enhanced
phase-angle diffusion with a diffusive mixing among orbit constants. However, (1.2)
shows that, for large p, the distance between two Jeffery orbits decreases near the flow
direction by a factor ∼1/p compared with their distance near the gradient direction.
This bunching of orbit constants results in an enhanced orbit constant diffusion that
increases with p, creating an additional set of time scales for diffusion across orbits.
Moreover, the diffusion across orbit constants could be coupled to the diffusion along
an orbit, preventing a simple piecewise analysis.

To test the relevance of our predictions to three-dimensional orientations, we have
explored the suspension rheology through a Langevin simulation of three-dimensional
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FIGURE 11. (Colour online) Rheology of a suspension of rod-like particles with
orientations allowed to rotate freely in three dimensions, for particle aspect ratios p= 2.83
and p= 5.00 and Pe= 104, drawn from two separate initial distributions: (a) equilibrated
orbit constant but a single phase angle, and (b) equilibrated phase angle but single orbit
constant. Note the difference in scale for both axes. (c) The decay times of the single-
and double-peak structures in the suspension stress, from simulations over a range of
aspect ratios. Since the double-peak structure decays extremely rapidly, our simulation
cannot resolve the double-peak decay time for the last two aspect ratios p≈ 7 and p≈ 8.
(d) The decay time of the suspension stress at intermediate times due to the orbit constant
relaxation, as a fit over the shaded time window in (b).

particle orientations under continuous shear. As discussed above, there should be two
sets of time scales in the suspension rheology: one set for the phase-angle relaxation,
discussed in § 5, and a second set of time scales for the orbit constant relaxation.
To discern the origins of the simulated rheology time scales, we ran two sets of
Langevin simulations with initial particle orientations (θ, φ) drawn from two separate
distributions.

The first set of simulations consists of particles drawn from an initial distribution
with an equilibrated orbit constant, but with a single phase angle in the flow–vorticity
plane (i.e. from the steady-state distribution in Leal & Hinch 1971 with φ restricted to
π/2). Since the orbit constants start completely relaxed, any change in the suspension
rheology arises solely from the phase-angle dynamics. The suspension rheology for
this initial distribution is shown for two aspect ratios p=2.83 and p=5.00 at Pe=104

in figure 11(a). The qualitative features of the suspension shear stress are the same as
for the two-dimensional continuous shear rheology in figure 6(a). There is a distinct
double-peak structure in the suspension stress for both aspect ratios at short times. At
slightly longer times, the double-peaks fade into single peaks with a period of one-half
a Jeffery orbit. These single peaks appear to decay more slowly. Note that, since the
initial distribution starts from a single phase angle, the double-peaks in the suspension
stress start more pronounced than for the initially isotropic distribution in figure 6(a).

The second set of simulations consists of particles drawn from an initial distribution
with an equilibrated phase angle, but with a single orbit constant in the flow–gradient
plane (i.e. θ = π/2 but φ drawn from the continuous shear distribution in (2.14)).
Since the phase angle starts completely relaxed, any change in the suspension rheology
arises solely from the diffusive relaxation of the orbit constant. The suspension
rheology for this initial distribution is shown for two aspect ratios p = 2.83 and
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p= 5.00 at Pe= 104 in figure 11(b). Since the phase angle starts completely relaxed,
the suspension rheology does not change on the time scale of the Jeffery orbit.
Instead, the suspension stress only changes on the much longer diffusive time for the
orbit constant relaxation, decaying monotonically to its steady-state value.

These time scales for the rheology are shown over a range of aspect ratios in
figure 11(c,d). The time scales are extracted from Langevin simulations of 4000
particles at Pe = 104, as described in appendix B. The two phase-angle time scales
are defined similarly to those in § 5. The orbit constant time scales shown are defined
by fitting the stress at intermediate times to an exponential decay. If the picture for
phase-angle dynamics laid out in this paper is relevant for three dimensions, then
for large p the double-peak should decay quickly on a time scale of ∼1/Dr

0p4 while
the single peak should decay more slowly on a time scale of ∼1/Dr

0p2. To check
for this dependence we plot these two time scales for the phase-angle relaxation
as a function of aspect ratio on a log–log scale in figure 11(c). There are clearly
two separate aspect ratio dependences for the two phase-angle time scales, which
seem to be consistent over the limited range with the ∼1/Dr

0p4 and ∼1/Dr
0p2 scaling

for particles confined to the flow–gradient plane. Thus the two-dimensional analysis
presented in this paper captures much of the three-dimensional orientation dynamics.
The decay of the stress due to the orbit constants also shows a time scale that scales
with p. By fitting the simulated suspension stress to an exponential decay, we find
that the orbit constant relaxation time scale is consistent with the 1/Dr

0p2 scale argued
by Hinch & Leal (1973). These orbit constant time scales are similar in magnitude
to the phase-angle time scales, suggesting that the distribution’s for freely-rotating
particles is strongly affected by diffusion both along and across orbits.

Under oscillatory shear, we also expect qualitative features of the two-dimensional
solutions to be present in three dimensions. As shown by Leahy et al. (2013), in three
dimensions the orientation distributions change with strain amplitude under oscillatory
shear in a manner similar to the two-dimensional oscillatory shear distributions in § 4.
The oscillatory shear diffusion Dr

eff as measured from correlations in three dimensions
also showed oscillations at the resonant Jeffery orbit amplitudes. Thus, the qualitative
features of orientation dynamics for particles confined to the flow–gradient plane are
present for the full three-dimensional dynamics under oscillatory shear.

6.3. Proposed experiments and possible applications
The results presented above suggest several experiments that are possible with current
particle synthesis techniques. The detailed predictions in this manuscript could be
tested by confining particles to rotate in a single Jeffery orbits, preferably in the
flow–gradient plane. This confinement could be accomplished either via a magnetic
field (Almog & Frankel 1995) or by shearing particles adsorbed to a liquid–liquid
interface (Stancik et al. 2003). Moreover, as discussed in § 6.2 many of the scalings
and qualitative predictions of this paper should be relevant for particles rotating in
three dimensions. Precise single-particle measurements via confocal or holographic
microscopy of Dr

eff over a range of aspect ratios and strain amplitudes could further
verify the orientation dynamics described above. Alternatively, the average degree
of alignment of an anisotropic particle suspension under oscillatory shear could be
measured with flow dichroism or a similar technique. Our rheological predictions
could be most easily checked for [ηeff ] as a function of γ , as this measurement
allows averaging the stress signal over many cycles to reduce noise. Moreover, the
strain amplitude at which [ηeff ] is maximal is roughly independent of p and thus will
be robust to a suspension with aspect ratio polydispersity.
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Our results could also be extended to other regimes and applications. Since
the analysis in §§ 2 and 3 does not depend on the details of the Jeffery orbit, it
could be easily extended to velocity fields other than a Jeffery orbit, such as for
weakly inertial particles (Subramanian & Koch 2005) or for particles in weakly
non-Newtonian suspending fluids (Leal 1975, 1980; Stover & Cohen 1990; Iso,
Cohen & Koch 1996a,b). On a practical level, oscillatory shear could be used to
align rod suspensions for colloidal self-assembly or for three-dimensional printed
inks with fibres embedded in them (Shofner et al. 2003; Compton & Lewis 2014).
As shown in figure 5(b), the maximal orientational alignment is not obtained under
continuous shear but is at a resonant amplitude that depends on the aspect ratio. By
using the arbitrary-waveform oscillatory shear equations (3.7) and (3.8), it might be
possible to design a specific waveform for a desired degree of particle alignment.
Over ninety years after Jeffery’s solution for particle rotations in a viscous fluid,
rod-like particles still have intellectually interesting and practically applicable features
worthy of discovery.

Acknowledgements
We would like to thank L. Bartell, T. Beatus, and J. Sethna for useful discussions.

We acknowledge support from the National Science Foundation (CBET-1435013)
(D.L.K.), from the US Department of Energy, Office of Basic Energy Sciences,
Division of Materials Science and Engineering under Award No. ER46517 (I.C.), and
from National Defense Science and Engineering Graduate (NDSEG) Fellowship 32
CFR 168a (B.D.L.).

Appendix A. Continuous and oscillatory shear numerical solutions
A.1. Continuous shear simulation

We numerically solved the Fokker–Planck equation for the distribution’s time evolution
(2.1) by expanding the distribution ρ in Fourier space and transforming (2.1) into
a sparse matrix equation. For our simulations, we truncated the Fourier series to
the first 301 terms (i.e. m ∈ [−150, 150] for basis functions eimφ); the resulting
coupled ordinary differential equations were solved with a fourth-order Runge–Kutta
integration scheme with a time step of dt=5×10−4/γ̇ . Either increasing or decreasing
the number of terms or the time step had little effect on the simulation results.
Rather than simulate a specific set of initial conditions, we evolve 301 separate initial
conditions corresponding to ρm(φ, t = 0)= eimφ . Using the linearity of (2.1), we can
then reconstruct an arbitrary distribution from this set of initial distributions. We
can also use these simulation results to rapidly numerically solve for triangle-wave
oscillatory shear, as described below.

A.2. Construction of oscillatory shear propagators
Rather than numerically integrate (3.1) for triangle-wave oscillatory shear at each
strain amplitude, we instead opted to numerically create a set of oscillatory
shear propagators and find the oscillatory distribution from these propagators. The
propagators can be constructed rapidly from the continuous shear solutions and allow
for rapid evaluation of the oscillatory shear distributions after an arbitrary time.

To find these propagators, we first find the change in ρ after one full cycle from
the continuous shear simulations. One cycle of triangle-wave oscillatory shear can
be viewed as two separate pieces: continuous shear going forward for a time γ /γ̇ ,
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followed by continuous shear going backward for the same time. Let the probability
distribution ρF = ρF(φ, t | φ0) be the probability density of finding a particle with
orientation φ after undergoing forward shear for a time t, given that the particle started
at an orientation φ0. Similarly, let ρB(φ, t | φ0) be the probability density of finding a
particle at orientation φ after undergoing backward shear for a time t. The orientation
of the particle φ after a full cycle is a two-step process: after the first half of a
cycle, the particle rotates to an intermediate orientation φ1/2 with some probability
ρF(φ1/2, t= Tcyc/2 | φ0), then rotates during the second half of the cycle from φ1/2 to
its final orientation φ1 with some other probability ρB(φ1, t | φ1/2). We integrate over
φ1/2 to find the conditional probability distribution ρ(φ1, t= Tcyc | φ0) of the particle’s
final orientation after a full cycle:

ρ(φ1, Tcyc | φ0)=
∫
ρF(φ1/2, Tcyc/2 | φ0)ρB(φ1, Tcyc/2 | φ1/2) dφ1/2. (A 1)

Now, we Fourier expand ρF(φ1/2, Tcyc/2 | φ0) in both φ1/2 and φ0, and similarly for
ρB:

ρF(φ1/2, Tcyc/2 | φ0)=
∑

kl

AF
kle

ikφ1/2eilφ0, (A 2)

ρB(φ1, Tcyc/2 | φ1/2)=
∑

mn

AB
mneimφ1einφ1/2 . (A 3)

Substituting into (A 1) and integrating gives a Fourier expansion of ρ(φ1, Tcyc |φ0) as

ρ(φ1, Tcyc | φ0)=
∑

ml

B1
mle

imφ1eilφ0,

where B1
ml ≡ 2π

∑
n

AF
−n,l AB

mn.

 (A 4)

Thus, we can calculate the distribution after one cycle of triangle-wave oscillatory
shear from the continuous shear distributions by using matrix multiplication. In
contrast, most other waveforms require a full numerical solution for ρ at each strain
amplitude.

To find the distribution after N + 1 cycles, we follow a similar argument. We can
view the probability of finding the particle at an orientation φN+1 after N + 1 cycles
as a two-step process: the particle started at φ0 and rotated to φN after N cycles
with some probability ρ(φN,NTcyc | φ0), followed by a rotation from φN to φN+1 with
probability ρ(φN+1, Tcyc | φN) after the final cycle. Following the same argument as
above, the distribution ρ(φN+1, (N + 1)Tcyc | φ0) can be written as

ρ(φN+1, (N + 1)Tcyc | φ0)=
∑

lm

BN+1
ml eimφN+1eilφ0,

where BN+1
ml ≡ 2π

∑
n

BN
−n,lB

1
mn.

 (A 5)

Thus the distribution after an arbitrary number of triangle-wave oscillation cycles can
be reconstructed from the simulated forward and backward probability distributions,
once the coefficients AF

kl, AB
mn are known.

The coefficient matrices AF
kl,A

B
mn can in turn be calculated from the continuous shear

solutions. Let
ρk(φ, t)=

∑
l

akl(t)eilφ (A 6)
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be the continuous shear solution of (2.1) subject to the initial condition ρk(φ, 0)= eikφ ,
i.e. akl(0)= δkl. Due to linearity, any distribution ρ(φ, t) can be written as a sum over
the ρk. In particular, we can write ρF(φ, t | φ0) in this way:

ρF(φ, t | φ0)=
∑

k

qk(φ0)ρk(φ, Tcyc/2), (A 7)

where qk(φ0) are the coefficients of the Fourier expansion whose values depend on φ0.
Substituting the definition of ρk ≡

∑
k akleilφ , we can write this as

ρF(φ, t | φ0) =
∑

k

qk(φ0)
∑

l

akl(t)eilφ

=
∑

kl

qk(φ0)akl(t)eilφ. (A 8)

The distribution ρ(φ, t | φ0) is defined such that ρ(φ, 0 | φ0) = δ(φ − φ0) ≡
(1/2π)

∑
kexp(ik(φ − φ0)). Substituting this into (A 8) at t = 0 and using the

definition of AF
kl from (A 2), the forward shear propagator AF

kl and the continuous
shear coefficients akl can be related as

AF
kl =

1
2π

a−l,k(Tcyc/2). (A 9)

To obtain the coefficients for backward shear AB
kl, we note that shearing backwards is

the same as taking φ→−φ, φ0→−φ0, as visible from (2.1). This is in turn the same
as switching the signs of the indices, so the backward shear propagator AB

kl is

AB
kl =

1
2π

al,−k. (A 10)

Thus, from our simulation for continuous shear in one direction only, we can quickly
recreate the time-dependent distribution ρ under triangle-wave oscillatory shear
for strains of arbitrary amplitude. This same procedure can be used to solve the
convection–diffusion equation after a time t in O(ln t) steps instead of the normal
O(t) steps needed for direct numerical integration; we use this procedure to rapidly
find the long-time distributions under oscillatory shear. We used this fast method to
find both ρ and Dr

eff numerically at ≈3000 separate amplitudes, equally spaced from
γ = 0.02 to 60.00.

A.3. Extracting diffusion constants from simulation
For continuous shear, the diffusion coefficients shown in figure 2 were calculated by
fitting exponentials to correlations 〈cos m(κ − κ0)〉 from 20 separate initial orientations
κ0 which were sampled from the steady-state distributions. As mentioned in the text,
the fitted correlations in κ-space are independent of the starting orientation, while the
correlations in the unstretched φ-space do depend on the starting orientation.

For oscillatory shear, the situation is slightly more complicated since the orientations
are diffusive in a new, stretched z-space. Rather than fitting correlations in the new
z-coordinate, which must be computed for each strain amplitude, we examine the
long-time decay of an arbitrary correlation. Since the ancillary distribution g(z)
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evolves according to a diffusion equation in z-space with an effective diffusion Dr
eff ,

any correlation C(1t) will decay as a sum of exponentials:

C(1t)=
∑

m

Cmexp(−m2Dr
eff1t). (A 11)

At long times Dr
eff1t � 1, only the term with the smallest m (m = 1) remains; the

others have decayed. To find the effective diffusion under oscillatory shear, we
examine the decay of a correlation C after a long time such that C(t) ∼ 10−3. For
diffusive correlations, the further decay is entirely due to the m= 1 term; the terms
m= 2 and higher are exponentially smaller, approximately C4∼ 10−12 as can be seen
from (A 11), and do not contribute to the decay. From these long time decays of
the correlation C, we extract the oscillatory shear diffusion constant Dr

eff . To check
the robustness of this technique, we evaluate two separate correlations, 〈cos1φ〉 and
〈cos1κ〉, for 20 separate initial orientations sampled from the long-time distribution.
Empirically, the value of Dr

eff obtained from the long-time correlations is independent
of either the particle’s starting orientation or the type of correlation fitted. In contrast,
at short and intermediate times the extracted Dr

eff varies with both the initial particle
orientation and the type of correlation fitted. This difference at short times arises
because the orientation is in general not diffusive in either the original φ-space or
the continuous shear stretched κ-space, but is diffusive in the (uncalculated) z-space
for oscillatory shear.

Appendix B. Rheology calculations and rheological time scale definitions

Calculating the rheology. To calculate the suspension rheology for the two-dimensional
particle orientations under continuous shear, we used the theory of two-dimensional
rod dynamics presented in § 2 to find the time-dependent ancillary distribution f (κ, t)
at Pe = 104. Once the ancillary distribution is known, the suspension stress can
be calculated from (5.1). To find the rheology for orientations in three dimensions,
we numerically integrated a Langevin equation for 4000 separate initial particle
orientations at Pe = 104, by integrating (1.1) with an additional noise term using an
Euler method. The time step size dt= 5× 10−4/γ̇ gives an integration error after each
time step that is 10−3 that of the random motion. The orientation moment tensors
〈nn〉 and 〈nnnn〉 are evaluated from direct averages of the particle orientations.

To calculate the triangle-wave oscillatory shear rheology for two-dimensional
particle orientations, we first obtained the oscillatory shear distributions at long
times. The ancillary distribution f (κ) can be found from (3.10). While the coordinate
derivative ∂z/∂κ and thus the functional form of f can be exactly evaluated analyt-
ically, the distribution’s normalization must be evaluated numerically. Alternatively,
the distribution ρ can be found from the simulations at Pe= 104; we find that both
procedures produce the same rheology to within ≈1/Pe. To find the stress during
one half-cycle, we evolved the distributions in the limit of no diffusion for the
duration of the half-cycle; since our theory describes the limit of large strain rates
the ancillary distribution does not diffusively evolve during a cycle. The maximal
[ηeff ] amplitudes are found only from (3.10) which is orders of magnitude faster than
simulating the orientation distributions; we use a Nelder–Mead simplex algorithm to
find the maximal [ηeff ] amplitudes for the 1000 aspect ratios logarithmically spaced
from p= 1.5 to 100.0 shown in figure 9(c).
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Definitions of rheological time scales. The double-peak decay time scale in figure 6(c)
is defined as the time when the suspension stress at half-integer Jeffery orbits switches
from a local minimum to a local maximum. To find this time scale, we examined
the second derivative of the suspension stress via our analytical solution after a fixed
time corresponding to 200 half-integer Jeffery orbits and varied the rotary diffusion
Dr

0. Examining the stress after these long times prevents the decaying envelope of the
suspension stress from biasing the second derivative. Traces of the single peaks are
always present, in contrast to the double-peaks which completely disappear after a
well-defined time. To minimize short-time transients in the single peak decay time, we
looked for the time when the magnitude of the single peaks decayed to 1 % of their
initial value, by examining the stress at a fixed time corresponding to the first trough
after 200 half-integer Jeffery orbits (i.e. γ̇ t= 200.5π(p+ 1/p)) and varying Dr

0. Since
the double-peak structure obscures the height of the suspension stress’s initial peak at
t= 0, we examine the decay of the minimum of the troughs in the stress, occurring
every (n+ 1/2)/2 Jeffery orbits. We then rescaled this time to give the corresponding
1/e decay time of the single peaks.

We extracted the double-peak and single-peak decay times for the three-dimensional
suspension rheology in a similar manner. However, since there is no closed-form
solution for three-dimensional rod orientations, we looked at a single set of
simulations at Pe= 104 for each aspect ratio and initial distribution. The double-peak
decay time shown in figure 11(c) is the time at which the (smoothed) second
derivative of the stress at each half-integer Jeffery orbit is zero, interpolated between
half-integer Jeffery orbits to improve temporal resolution. For all but the lowest aspect
ratios, this zero occurs after only a few half Jeffery orbits. The single-peak decay
times are measured from the same set of simulations. To minimize the effects of
noise inherent in a Langevin simulation, we calculated the 1/e decay time for the
three-dimensional orientations from when the troughs in the stress decayed to 10 %
of their initial value, instead of 1 %.

The orbit constant decay times shown in figure 11(d) are also taken from a single
set of simulations for each aspect ratio at Pe = 104. We defined the time scale for
the orbit constant decay by fitting the shear stress at times 0.06 < Dr

0t < 0.1 to an
exponential decay, after subtracting off the steady-state shear stress. To minimize the
effects of noise inherent in the Langevin simulation, we smoothed the simulated shear
stress by convolving with a boxcar filter with a width of half a Jeffery orbit; the
data shown in figure 11(b) are not smoothed. While there are some transients in the
suspension stress at shorter times, empirically we find that the suspension stress is
well-described by an exponential decay for all the aspect ratios measured, within the
limited resolution of our simulations.
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