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Origami structures with a critical transition to
bistability arising from hidden degrees of freedom

Jesse L. Silverberg', Jun-Hee Na?, Arthur A. Evans3, Bin Liu', Thomas C. Hull?,
Christian D. Santangelo?, Robert J. Lang®, Ryan C. Hayward? and Itai Cohen’

Origami is used beyond purely aesthetic pursuits to design
responsive and customizable mechanical metamaterials'2.
However, a generalized physical understanding of origami
remains elusive, owing to the challenge of determining whether
local kinematic constraints are globally compatible and to an
incomplete understanding of how the folded sheet's material
properties contribute to the overall mechanical response®,
Here, we show that the traditional square twist, whose crease
pattern has zero degrees of freedom (DOF) and therefore
should not be foldable, can nevertheless be folded by accessing
bending deformations that are not explicit in the crease
pattern. These hidden bending DOF are separated from the
crease DOF by an energy gap that gives rise to a geometrically
driven critical bifurcation between mono- and bistability.
Noting its potential utility for fabricating mechanical switches,
we use a temperature-responsive polymer-gel version of the
square twist to demonstrate hysteretic folding dynamics at the
sub-millimetre scale.

A key theme unifying the study of biopolymer gels''®, biological
tissues'’, kinematic mechanisms'®?!, granular media**, network
glasses® and architectural elements™ is the competition between the
number of internal DOF, N;, and the number of internal mechanical
constraints, N.. The macroscopic behaviour of these systems in
the absence of self-stresses?”* is said to be underconstrained when
N;> N, overconstrained when N; < N, and isostatic, or marginally
stable, when N;= N.. This framework, which was initially laid out
by J. C. Maxwell in 1864, has been instrumental in understanding
a diverse range of mechanical phenomena in constraint-based ma-
terials, including rigidity percolation'®, topologically protected zero
energy modes', nonlinear elasticity'® and shock waves®. A feature
intrinsic to real physical materials but often left out of simpler
models is the existence of a hierarchy of DOF, each with its own
associated energy scale. When the details of these internal features
are incorporated, systems can be overconstrained and rigid with
respect to low-energy loading, but underconstrained and compliant
as higher-energy DOF are accessed. Thus, N; should be thought of as
a variable quantity that changes with the experimental energy scale.

Although these observations are fairly general, the emergent
mechanical phenomena that can be found in materials as the
DOF hierarchy is probed has not been well examined. Indeed, this
problem plays out in origami mechanics, where crease patterns
that are mathematically unfoldable because N; < N, nevertheless
easily fold when made by hand'®""**. In essence, the discrepancy
originates when origami structures are modelled as a series of rigid
polyhedra connected by freely rotating torsional hinges. Although
rigid foldability appears to be a reasonable simplification for the

folding behaviour, the fact that real materials can bend is a critical
piece of missing phenomenology. In fact, there is at present no
general approach for understanding and predicting the mechanical
behaviour of origami structures when their material properties are
taken into account. Although numerous examples of unfoldable
crease patterns exist, we here investigate the mechanics of a single
unit from the square-twist origami tessellation' (Fig. 1a,b; see also
Supplementary Movies 1 and 2 and Supplementary Fig. 1). Even in
this simple test case, we find a rich set of mechanical behaviours
that illuminate general principles applicable to any material with
measurably different energy scales separating overconstrained and
underconstrained states.

The square-twist pattern consists of alternating square and
rhombus facets, characterized by the length L and plane angle ¢, in
which the internal edges are either all mountain or valley creases. An
analysis of the geometric constraints reveals the pattern is isostatic.
Essentially, this arises from the four-fold rotational symmetry of
the structure, which imposes a cyclic set of constraints on the
four creases that define the central square facet (Supplementary
Information). Although this observation indicates that the crease
pattern should not be foldable, a trigonometric analysis of the
normalized edge-to-edge distance x/L shows that the square twist
allows two isolated states corresponding to the fully unfolded
and folded configurations (Fig. lc, upper and lower black lines,
respectively, and Supplementary Fig. 2).

Experiments measuring x/L on folded paper sheets without
external loading (Methods; Fig. lc, red data points) indicate
qualitatively different behaviour than the crease geometry’s naive
prediction of rigidity. Instead, below a critical plane angle
¢.=(25+2.5)°, the distinction between folded and unfolded
configurations is not observed; the structure is monostable with
an intermediate value of x/L (for example, Fig. 1b, side views).
Above ¢, both folded and unfolded configurations are observed;
the folded configuration exhibits x/L values that nearly match
the prediction, whereas the unfolded configuration exhibits x/L
values that are smaller than predicted for ideal sheets (Fig. 1b,
side view, and Fig. 1c). Although the crease pattern does not
admit solutions between folded and unfolded branches for any
¢ > 0°, direct observations during the folding process reveal that
the facets bend by a finite amount rather than remaining flat.
These deformations are additional DOF hidden from the bare crease
pattern, and are essential for foldability as they enable the structure
to access otherwise geometrically forbidden configurations. It is the
combination of this facet bending and the non-zero rest angles of
the creases, which are plastically set when the sheet is fully folded,
that gives rise to the observed intermediate configurations.
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Figure 1| Schematics and photographs introducing the square twist's
essential geometric properties and mechanical characteristics. a, The
square-twist folding pattern is shown with the edges in black, mountain
creases in red, and valley creases in blue. The geometry is defined by the
length, L, and the plane angle, ¢. The Euclidean distance, x, between the two
yellow stars quantifies the macroscopic configuration between folded and
unfolded states. b, Photographs of a square twist with ¢ =45° illustrate
out-of-plane deformations, and the stars define x when the square twist is
unfolded and folded. ¢, Comparison of geometric predictions to
experimental measurements for x/L as a function of ¢ based purely on the
crease pattern reveals qualitative disagreement. The former has bistable
solutions for all non-zero ¢ corresponding to folded and unfolded
configurations (black lines), and no permissible configurations between
these two states (lightly shaded region between lines). Experimental
measurements, however, exhibit regions with mono- and bistable solutions
depending on ¢ (red points, errors are shaded bands).

To study the unfolding behaviour, we measured the mechanical
response of the folded square twist to uniaxial tension. We observe
remarkably different behaviours for ¢ above and below the critical
plane angle ¢.. Below ¢, the structure smoothly opens and closes,
as indicated by the folding order parameter § (Fig. 2a inset and blue
line; Supplementary Movie 1), whereas above ¢, a rapid snapping
action between folded and unfolded states is observed, as indicated

a
<
9]
k]
€
©
©
Q
9]
e
¢} «— 2
L L L L L L L L L
0.0 01 02 03 04 05 06 07 08 09 10
Extension, Ax/L
b
z
[V
o
=
£
_0.5 1 1 1 1 1 1 | | |
0.0 01 02 03 04 05 06 07 08 09 10
Extension, Ax/L
¢ 45
40
35
< 30
= 25
5
o 20
5o - - .
10 = Rigid facet prediction
&> Measured scaled force, F/k, 2
© Measured equilibria 0
O L L L
0.0 0.5 1.0 1.5

Extension, Ax/L

Figure 2 | Experimental strain-controlled mechanical data studying the
transition between mono- and bistability in square twists.

a, Measurements of the folding order parameter, §, show smooth
continuous behaviour for ¢ =10° and an abrupt discontinuous jump for

¢ =45°. The inset illustrates the definition of §, and photographs show
points of interest on the red curve. b, Measurements of the tensile force F
as a function of the normalized extension, Ax/L, reveal mechanical
bistability between folded and unfolded configurations for ¢ =45° and
monostability for ¢ =10°. The inset shows schematics of the experiment,
definition of Ax, and location of the load cell. ¢, Measurements of the
tensile force, F(¢, Ax/L), normalized by the sheet's torsional bending
stiffness, kp, show the transition between mono- and bistability. White
circles indicate mechanically stable values of Ax/L, and black lines show
predicted solutions based on a crease geometry with rigid facets. Note that
these predictions do not permit solutions anywhere off the lines.
Furthermore, these data closely correspond to the measurements in Fig. 1c,
where load-free stable values of x were plotted as red dots, and where the
predicted solutions based on a rigid-facet geometry were similarly shown
as black lines.

by a jump in § (Fig. 2a, red line; Supplementary Movie 2). In the
latter case, where ¢ > ¢, both folded and unfolded configurations
are stable to small external loading, whereas intermediate config-
urations are unstable and quickly snap to one state or the other.
Displacement-controlled measurements of the force F as a function
of ¢ and normalized extension Ax/L also showed qualitatively
different behaviour above and below ¢. (Fig. 2b and inset). Here, the
extension Ax is the change in x at a given force F along the direction
of loading (Methods). For structures with ¢ < ¢, the force curves
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Figure 3 | Simulation results for the square twist with non-rigid facets.

a, The square-twist crease diagram has been modified with 'virtual creases’
that mimic the behaviour of facet bending, as indicated by thin lines. b, 3D
renderings from the simulation illustrate the unfolding sequence. Blue
arrows indicate the external load corresponding to strain-controlled
conditions. ¢, Simulation data where each line represents the mechanically
stable extensions as a function of geometry for various material properties.
The data reveal a critical angle ¢ (red dots) that varies with the
bending-to-crease energy ratio ky, /kc. For ky /kc =1, monostability is
observed for all ¢, whereas for k, /k. =103 bistability is found for all ¢.
Between these limits, a bifurcation separating the monostable (¢ < ¢) and
bistable (¢ > ¢¢) limits of the phase transition can be found. d, Examining
the distribution of energy between crease and bending degrees of

freedom for k, /k. =107 as a typical example, we see that the

contribution from bending has an energy barrier for intermediate values of
Ax/L that increases in magnitude with ¢. Conversely, the energetic
contribution from crease opening essentially increases monotonically with
Ax/L for all ¢. In both energy plots, the band thickness indicates the
simulation uncertainty.

increase monotonically, whereas structures with ¢ > ¢, exhibit
force curves with regions of negative slope, indicating mechanical
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Figure 4 | A sub-millimetre-scale self-folding polymer-gel version of the
square twist is used to verify the geometric nature of bistability in
stress-controlled conditions. a, Schematic of the trilayer structure
(dimensions not to scale). Folding is actuated by a temperature-dependent
swelling of the middle (pink) layer. Open slits patterned in the top and
bottom layers (blue) induce mountain and valley creases, respectively,
when viewed from above. b, Optical micrograph of a square twist released
in an aqueous medium at 60°C. ¢, Measurements of square-twist opening
as a function of temperature demonstrate hysteretic folding /unfolding
behaviour for ¢ > ¢ and non-hysteretic folding/unfolding for ¢ < ¢¢. In this
case, 15° < ¢ <30°. Solid lines (unfolding) correspond to heating, and
dashed lines (folding) to cooling. Inset micrographs show a structure with
¢ =45° at the indicated measurement points. d, Measurements of opening
as a function of temperature for the standard square twist compared to a
version with creases added where bending would otherwise occur. The
additional DOF afforded by setting ky /kc <1 entirely remove hysteretic
folding behaviour.

instability. To determine the force landscape that drives transitions
from the folded to the unfolded state, we measured the tensile force
normalized by the sheet’s torsional bending stiffness, k, (Fig. 2c,
Supplementary Figs 3 and 4). We find that the force barrier between
these states increases in magnitude with ¢, hinting at an underlying
mechanism for bistability. In particular, facet bending is localized to
the rhombi short diagonals, forming ‘virtual creases’ with a deflec-
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tion angle ¥ and energy ~ Lk, sin(¢/2)y>. Because the length of
these diagonals increases with ¢, the force barrier increases as well.

To further investigate this facet-bending mechanism, we
developed a numerical simulation of the unfolding behaviour
under uniaxial tension that calculates the configuration minimizing
the facet-bending and crease-unfolding energies for a given ¢ and
Ax/L (Fig. 3a,b, Methods). From these calculations, we determine
the energetic minima, which correspond to mechanically stable
states, for different ratios of the bending and crease torsional spring
constants, k;, /k. (Fig. 3c). For k;, /k. <1, monostability was observed
for all geometries, whereas for k, /k. > 103, all geometries exhibited
bistability. Between these limits, we found a critical plane angle ¢,
marking a bifurcation between mono- and bistability that varied
with ky /k.. When compared with the experimental phase diagram
(Fig. 2c), these calculations predict 10 < k,/k. < 100, which is
consistent with measurements that found k, /k. 2 36 for the paper
used in experiments (Supplementary Information).

Examining the internal distribution of energy by separating
the dimensionless bending energy U, /k,L from the dimensionless
crease energy U./k,L sheds light on how different DOF are
interacting to tune the bifurcation (Fig. 3d). For example, taking
ky/k.=10%, where ¢, ~20°, we see that the system’s total bending
energy has an energy barrier at intermediate values of Ax /L whose
magnitude increases with ¢. The total crease energy, on the other
hand, monotonically increases with Ax/L for all ¢. Whether this
monotonic rise in crease energy is high enough to overcome the
energy barrier that arises from hidden bending DOF determines if
the system is mono- or bistable (Supplementary Fig. 5).

Collectively, these results provide a geometric understanding
for the mechanical bistability of the square twist and, as such,
should translate to any thin sheet folded according to this crease
pattern. Although our experiments were performed with strain-
controlled loading, we predict that the observed bifurcation will
give rise to a hysteretic behaviour under stress-controlled loading
that can be tuned by both ¢ and k/k.. To test this prediction, we
used a micropatterned gel-trilayer version of the square twist with
L=200um (Fig. 4a,b; Methods). Here, differential swelling between
gel layers is used to create internal stresses that fold and unfold
the structure as the temperature T is varied. For this system, we
estimate k,/k. ~ 10* (Supplementary Information), and therefore
from simulations we expect ¢. ~20° (Fig. 3¢). Imaging a square twist
with ¢ =45° as the temperature is quasi-statically varied reveals the
expected hysteresis (Fig. 4c, dark green line). As predicted, when ¢
is decreased to 30° the hysteresis is reduced (medium green line),
and ultimately vanishes for ¢ =15° (light green line). Our results
with paper models and simulations also suggest that hysteretic
folding behaviour can be removed if k,/k. <1. This scenario can
be realized in the gel sheets by modifying and fully triangulating
the crease pattern (for example, Fig. 3a), effectively placing creases
where bending would otherwise occur. Indeed, we find for ¢ =45°
that the addition of these creases removes the hysteresis (Fig. 4d).
These experiments clearly illustrate the first-order properties of
the transition between folded and unfolded states that arises from
hidden bending DOF in the square twist (Supplementary Fig. 6).

Although this work shows how hidden DOF can be used to create
non-trivial features in an origami structure’s configuration space,
we envisage that the tunable and scale-free nature of the square
twist’s bistability should make it a useful design for robotic grippers,
microfluidic devices and even wearable exoskeletons. Moreover,
because the square twist can form 2D tessellations, it should be
possible to spatially vary the unit-cell geometry to create origami
mechanical metamaterials. For example, in analogy with secondary
structures in polymers that provide hidden length?, the ability of the
pattern to resist deformation up to a predetermined force threshold
can be taken advantage of to make materials with extremely high
toughness. Such devices would be capable of large bulk strain

without fracture by absorbing energy in a predetermined pattern
of sequentially opening square-twist unit cells. More broadly, the
possibility of alternative geometries (Supplementary Fig. 7) and
additional hidden DOF—such as facet stretching, facet shearing and
crease torquing—suggests that an even richer configuration space
may be hidden with these more energetically expensive deformation
modes. For example, these ideas are found in the mechanics of
thin shells, where bending and stretching energy barriers have been
shown to be modified by the introduction of creases”, leading to
a broad range of multistable behaviours. Thus, the geometry of
creased sheets offers a simple experimental platform to probe the
mechanical behaviour of a wider class of constraint-based materials
and the consequences of energy-scale dependent DOFE.

Methods

Sample fabrication and characterization. Digital CAD software and a laser
cutter were used to fabricate square-twist structures from 120 Ib paper (Radiance
120 Ib super smooth card stock, Beckett Expressions). Creases were patterned by
cutting perforated lines with equal lengths of material and gaps, then folded by
hand with a Lineco bone scorer to be mountain or valley according to the crease
assignment (Fig. 1a). For these samples, we set L=2.54 cm and varied ¢ from 10°
to 45° in increments of 5°. The lower bound is the limit of what can be
reasonably folded from this material, although a theoretical limit of 0° is where
the crease pattern is no longer well defined owing to overlapping mountain and
valley curves. The upper bound is set by self-intersection, which prevents the
structure from folding flat for ¢ > 45°. Samples used throughout this work were
folded and unfolded before mechanical testing, thus the unfolded stable
configuration retains some folding along the creases owing to plastic deformation
and hence responds differently than a ‘pristine’ sheet that has never been folded.

To quantify a square twist’s configuration in the absence of load, each sample
was first folded flat, then held to a calliper ruler to measure the Euclidean
distance x (Fig. 1a). Subsequently, each sample was unfolded, flattened on a table
under 2 s of compression applied by hand, and the distance x remeasured.

A custom-built mechanical tester previously described® was used to measure
the mechanical properties of square twists under tension. Samples were fixed to
the testing device and suspended in air with small tabs of gaffing tape. Although
this pre-loaded the samples with minor tension at zero extension (Fig. 2a), this
approach prevented any interactions with the lower surface of the testing
apparatus, which would otherwise interfere with the unfolding process. In a
typical experiment, the distance between loading plates and load cell force data
were simultaneously recorded by a single custom MATLAB program, and the
data stored for later analysis. Furthermore, the maximum experimental extension
was kept smaller than the theoretical limits (Fig. 2c black lines) to reduce risk of
tearing samples apart. Sample testing was video recorded with a Canon
Powershot camera filming at 7.5 FPS. Standard image analysis techniques were
used to measure the order parameter for folding, 8, as a function of the
normalized extension Ax/L, which as described in the main text is measured
from the mechanically equilibrated folded state (Fig. 1c lower branch of red data).

Simulated square twists. To explore how material properties, and in particular
finite bending stiffness of the flat facets, influences mechanical behaviour of the
system, we developed a numerical simulation of the square twist’s folding
behaviour. In it, we constrained each of the 16 facet corners to have a fixed
distance from their neighbouring corners according to the crease pattern. Crease
and facet bending deformations were then assigned an elastic energy given by:

Usotal = Ucrease + Ubena

L 12 9
=3 {hZ(@—en)wkaxjwf )
i=1 j=1

where

for square facets,
for rhombus facets

, V2
77\ 2sin(¢/2)

In this expression, the first term is the crease energy, which is proportional to the
torsional elastic constant k. times the crease length L, and is a sum over the 12
individual creases. It is also a function of the crease angle 0, determined from a
dot product of two adjacent facet normals, minus an equilibrium value 6,. This
represents the fact that, once made, creases no longer lay flat. A value of 6, =10°
was used here, which is consistent with our experimental samples. The second
term is the facet-bending energy, which is proportional to the torsional elastic
constant k, times the length of the bend 4;L, and is a sum over the nine indicated
facet diagonals (Fig. 3a). It is a function of the bending angle 1;, which, unlike
creases, is zero in a stress free state. Like the crease DOEF, these bending DOF are
also calculated from the dot product of the facet normals.
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Specifying ¢ and a target Ax/L, equation (1) was numerically minimized 10. Tachi, T. in Proceedings of the International Association for Shell and Spatial
using the Levenberg-Marquardt algorithm in MATLAB, where the target Ax/L Structures (IASS) Symposium: Evolution and Trends in Design, Analysis and
was incremented from 0 to its maximum value in 91 steps. This process was Construction of Shell and Spatial Structures (eds Domingo, A. & Lazaro, C.)
repeated 20 times with initial conditions generated from a geometric 2287-2294 (Editorial Universitat Politécnica de Valéncia,
interpolation between the folded and unfolded states that did not preserve facet 2009); http://go.nature.com/HbzSH1
areas. In each realization, the facet corners were perturbed along x,y and z by an ~ 11. Hull, T. Project Origami: Activities for Exploring Mathematics
amount that was uniformly distributed over the range given by =L/10. In this (CRC Press, 2012).
way, we used semi-random initial conditions to form an ensemble-averaged 12. Thiria, B. & Adda-Bedia, M. Relaxation mechanisms in the unfolding of thin
solution that minimized equation (1) and satisfied the crease pattern’s geometric sheets. Phys. Rev. Lett. 107, 025506 (2011).
constraints. We then averaged the facet bending angles of the ensemble-averaged 13. Dias, M. A., Dudte, L. H., Mahadevan, L. & Santangelo, C. D. Geometric
solution, producing an overall average rhombus bending angle ¥/, an overall mechanics of curved crease origami. Phys. Rev. Lett. 109, 114301 (2012).
average square-facet bending angle v, and a centre square-facet bending angle 14. Lechenault, E, Thiria, B. & Adda-Bedia, M. Mechanical response of a creased
Ve (Supplementary Information). sheet. Phys. Rev. Lett. 112, 244301 (2014).

15. Feng, S. & Sen, P. N. Percolation on elastic networks: New exponent and
Self-folding gel fabrication and imaging. The self-folding version of the square threshold. Phys. Rev. Lett. 52, 216-219 (1984).
twist consists of a temperature-responsive hydrogel film capped on both the top 16. Broedersz, C. P,, Mao, X., Lubensky, T. C. & MacKintosh, E. C. Criticality and
and bottom surfaces by rigid patterned layers. Although the method is described isostaticity in fibre networks. Nature Phys. 7, 983-988 (2011).
elsewhere®, we provide a brief summary here. First, we spin-coated a layer of 17. Silverberg, J. L. et al. Structure-function relations and rigidity percolation in the
ultraviolet-crosslinkable poly(p-methyl styrene) (PpMS) with a thickness of shear properties of articular cartilage. Biophys. J. 107, 1-10 (2014).
50 nm. Using a maskless lithographic method, a pattern of stripes corresponding 18. Sun, K., Souslov, A., Mao, X. & Lubensky, T. Surface phonons, elastic response,
to the valley creases was used to define regions where the PpMS layer was and conformal invariance in twisted kagome lattices. Proc. Natl Acad. Sci. USA
crosslinked. Next, the temperature-responsive poly(N -isopropyl 109, 12369-12374 (2012).
acrylamide-co-sodium acrylate) (PNIPAM) polymer was deposited and 19. Kane, C. & Lubensky, T. Topological boundary modes in isostatic lattices.
crosslinked on the PpMS layer with a thickness of 1.5 um. Finally, a second layer Nature Phys. 10, 39-45 (2013).
of PpMS with a thickness of 50 nm was deposited and crosslinked with a pattern 20. Chen, B. G-g., Upadhyaya, N. & Vitelli, V. Nonlinear conduction via solitons
corresponding to the mountain creases. This trilayer structure then consisted of in a topological mechanical insulator. Proc. Natl Acad. Sci. USA 111,
two thin rigid outer layers encompassing a middle layer that swells with 13004-13009 (2014).
temperature. To prevent adhesion between the hydrophobic PpMS panels in the 21. Paulose, J., Chen, B. G-g. & Vitelli, V. Topological modes bound to dislocations
folded state, a 10-nm polyelectrolyte layer was coated on both outer surfaces of in mechanical metamaterials. Nature Phys. 11, 153-156 (2015).
PpMS by spin-coating a photo-crosslinkable poly(sulphopropyl methacrylate) 22. Liu, A. J. & Nagel, S. R. Nonlinear dynamics: Jamming is not just cool any
copolymer and crosslinking with ultraviolet light. On swelling in an aqueous more. Nature 396, 21-22 (1998).
buffer, stresses are developed within the middle hydrogel layer, causing the 23. Keys, A. S., Abate, A. R, Glotzer, S. C. & Durian, D. J. Measurement of growing
bilayer crease-like regions to bend to an angle programmed by the width of the dynamical length scales and prediction of the jamming transition in a granular
open stripe in the capping PpMS layer. Trilayer regions, on the other hand, material. Nature Phys. 3, 260-264 (2007).
remain flat like facets. For the square-twist pattern, each crease segments is 24. Van den Wildenberg, S., van Loo, R. & van Hecke, M. Shock waves in weakly
programmed to fold to either 47 at room temperature, corresponding to the flat compressed granular media. Phys. Rev. Lett. 111, 218003 (2013).
folded state. 25. Thorpe, M. Continuous deformations in random networks. J. Non-Cryst. Solids

Full triangulation of the fold pattern was accomplished by patterning open 57, 355-370 (1983).
stripes in both the top and bottom rigid films where bending was observed in the ~ 26. Heyman, J. The Science of Structural Engineering (World Scientific, 1999).
paper experiments and numerical simulations. Thus, these regions had only a 27. Maxwell, J. C. On the calculation of the equilibrium and stiffness of frames.
single layer gel film that was not programmed to fold, but instead offered much Lond. Edinb. Dubl. Phil. Mag. J. Sci. 27, 294-299 (1864).
lower bending resistance than the trilayer facet regions. 28. Calladine, C. Buckminster Fuller’s “tensegrity” structures and Clerk Maxwell’s

To measure the opening x, each sample was placed in an aqueous medium rules for the construction of stiff frames. Int. J. Solids Struct. 14,
and observed with epi-fluorescence microscopy through the temperature range 20 161-172 (1978).
to 60°C. A heat stage was used to control the temperature (Zeiss Tempcontrol 29. Demaine, E. D., Demaine, M. L., Hart, V., Price, G. N. & Tachi, T. (Non)

37-2 digital), which was varied in 5°C increments. At least 30 min at each existence of pleated folds: How paper folds between creases. Graphs
temperature was allowed for the gel to swell to equilibrium. The folding/unfolding Combinator. 27, 377-397 (2011).
process, therefore, was under quasi-static stress-controlled conditions. 3D images 30. Hull, T. C. Origami®: Proceedings of the Third International Meeting of Origami
of polymer square twist were reconstructed using ImageJ from image stacks Science, Mathematics, and Education 29-38 (A K Peters, 2002).
collected using a laser scanning confocal fluorescence microscope (Zeiss LSM 510  31. Fantner, G. E. ef al. Sacrificial bonds and hidden length: Unraveling molecular
META), with the refractive index of the aqueous medium corrected for. mesostructures in tough materials. Biophys. J. 90, 1411-1418 (2006).
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b =9 b =18° b =27°

b = 36° ¢ = 45°

FIG. S1. These schematics show crease patterns for square
twists with various plane angles.

ADDITIONAL SCHEMATICS

To supplement the crease pattern shown in the main
text where the plane angle ¢ = 45°, additional fold
patterns are shown here with different plane angles ¢
(Fig. S1).

COUNTING SQUARE TWIST DOF

The number of DOF for a generic polyhedral surface in
3D with no holes can be derived from Euler’s polyhedral
formula and is expressed as'?

DOF =Ngy =3~ > (Npi—3),  (S1)
Ny >3

where Ng is the number of edges on the boundary
and Ny; is the number of edges of the i*h facet. For
the generic square twist (Fig. 1(a) and S1), Ng;, = 12,
Ny; =4 fori=1,...,9, giving zero DOF. This is con-
sistent with the observation that the generic quad mesh

NATURE MATERIALS | www.nature.com/naturematerials

is locked, and thus has no flexibility. As is well-known,
there are special non-generic quad meshes such as the
Miura-ori® for which symmetry makes some constraints
redundant. For the Miura-ori this restores one DOF,
but in general, more DOF can be restored depending on
the specific symmetries. Along these lines, square twists
with modified mountain and valley crease assignments
are known to be rigidly foldable with one DOF*.

PREDICTED SOLUTIONS FOR RIGID FACETS

Given the crease pattern alone, a trigonometric anal-
ysis reveals the square twist should have two configu-
rations corresponding to the folded and unfolded states.
Defining the angle © to be any of the valley creases on the
interior square facet, we calculate the distance between
the two points that define the folding order parameter §
and find the constraint cos?® = 1. Thus, ©® = 0 or T,
which respectively, is the unfolded and folded configura-
tions. Taking a similar approach and calculating Az /L,
we find

Ax/L=[(1+2cos¢ +sing)”

071/2
+(i1+2sinq5:|:cos¢)} , (S2)

which was used to plot the two black contours in Fig. 1(c)
of the main text.

MODIFIED SQUARE TWIST WITH 1 DOF

As a simple way to explore the role of bending DOF
in the square twist independent of the role played by en-
ergetics, we extend the rigid facet geometric model to
permit bending along the short diagonals of each rhom-
bus, effectively splitting them into two rigid isosceles tri-
angles. Imposing 4-fold rotational symmetry constrains
the crease pattern so that only 1 DOF is added to the
system. Using MATLAB, we sweep through ¢ from 0°
to 45° in steps of 2.5° and solve for the folding order
parameter ¢ as the rhombus facet bending angle ¥;pomp
is varied. We take a maximum deflection of ¥;pomp to

1
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FIG. S2. Bifurcation of the folding order parameter § when
1 DOF is added from facet bending. For a rigid square twist,
6 = 0 when folded, 1 when unfolded, and due to geomet-
ric constraints forbidden from taking any intermediate value
(black lines). Introducing bending allows § to take intermedi-
ate values (green dots) with a critical point at ¢. = (23 £2)°
that separates a continuously connected region (¢ < ¢.) from
a region with disconnected solutions (¢ > ¢.). Green points
are uniformly spaced in the bending angle ¥;homb, and the
forbidden configurations (¢ > ¢, white space) corresponds
to the region with rapid unfolding dynamics (Fig. 2(a), main
text).

be 10° and plot the solutions in the (4, ¢) configuration
space (Fig. S2). In contrast to the experiments and de-
tailed mechanical simulation described in the main text,
each crease DOF here has a bending stiffness k. = 0,
and each bending DOF has k, = 0 for ¥rhomp < 10°
and kp = oo for Yrpomp > 10°. Though this constrained
bending DOF is a coarse model for how bending works
in real materials, it allows us to isolate kinetic properties
of the structure and their consequences for configuration
space. Indeed, similar to experimental observations, we
find a bifurcation at ¢, = (23£2)° with monostability for
¢ < ¢, and bistability for ¢ > ¢.. Evidently, the extra
DOF introduced by facet bending is a major factor that
enables both the ¢-dependent bifurcation and foldability
of the square twist.

MEASURING FLEXURAL RIGIDITY

To normalize experimental force and energy data, the
flexural rigidity D was measured from a strip of 120 lb
paper whose dimensions were L x8.5L, with L = 2.54 cm.
To make this measurement, the strip was clamped hor-
izontally, allowing a controlled length to be suspended
under gravity. Digital photographs were taken from a
side view so that the strip could be seen edge-on and its
deflection determined (Fig. S3(a)). Thus, we captured a
series of images where the suspended arc length ¢ varied
from L to 8L, and with standard image tracking tech-
niques, we extracted the vertical deflection y as a func-

tion of horizontal position z (Fig. S3(b), red line). This
coordinate data was fit to the expression®

_ [ pgt 4 43 2,2
Y= (24D) (z* — 4la® + 60%27) (S3)

where p is the measured paper density and ¢ is the mea-
sured paper thickness (Fig. S3(c,d)). Eq. (S3) was de-
rived for the small deflection limit and allowed us to per-
form a one-parameter fit for D as £ was varied from L
to 8L. Generally, measurements for ¢ < 2L were domi-
nated by an intrinsic curvature in the paper. For ¢ = 8L
there were also noticeable deviations from to the small-
deflection approximation used to derive Eq. (S3). For all
other values of ¢, the fits were tightly clustered around
the median measured D. Flipping the strip over and re-
peating the measurements on the opposite side produced
another set of values for D as a function of ¢ that exhib-
ited the same trends. Averaging the median values from
each data set yielded the value used in the main text,
D = (15.6 £0.7) x 1072 N-m, where ¢ = 0.356 mm and
p = 871 kg/m?3.

To convert the flexural rigidity D to the bending tor-
sional elastic constant k;, we note that bending is con-
strained by the crease pattern to occur over an area
of length L and width s. Here, s is the bending arc
length and, to a good approximation, is s ~ L/10 for
our experiments. Thus, the bending energy is U, =
(D/2) [ R~% dA, where the radius of curvature R = s/v
and the integral is evaluated over the area where bend-
ing occurs. Approximating R as constant over the bend,
we evaluate the integral and find U, = (DL/2s)y? =
(L/2)kptp?. Thus, ky, = D/s ~ 6 N/rad.

SQUARE TWISTS WITH DIFFERENT
THICKNESS PAPER

In the main text data was presented on 120 1b paper
(Fig. 2(b)). Here, we provide measurements of the tensile
force F' as a function of plane angle ¢ and normalized
extension Az/L for 53 1b (D = 2.1 x 1072 N-m) and 28
Ib (D = 0.53 x 1072 N-m) paper (Fig S4).

MEASURING CREASE TORSIONAL STIFFNESS

A single mountain crease 21.6 cm in length was made
in a sheet of 120 lb paper and loaded into our custom
mechanical testing device®. The crease was deflected by
0.94 rad and found to have two linear responses corre-
sponding to small (< 0.15 rad) and large (> 0.15 rad)
deflections. For the small deflections characteristic of an
elastic response, the torque was linearly proportional to
angular deflection by a constant k. = 170 + 20 mN /rad,
which we take as the crease torsional stiffness.
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FIG. S3. Steps for measuring the flexural rigidity, D. (a)
A strip of paper is clamped horizontally and allowed to sag
under gravity. A photograph of the deflection is taken from
the edge view, which extends to the left of the mounting ar-
mature. (b) Standard image analysis techniques are used to
extract the vertical deflection, y, as a function of the hori-
zontal position, . The red line is the automatically tracked
coordinate data superimposed on the corresponding photo-
graph. (c) The measured deflection y(z) is fit to Eq. (S3) and
is shown here in blue for comparison. (d) The process of fit-
ting the deflection to Eq. (S3) is repeated for various lengths
L of paper. This plot superimposes measured deflection for
one strip of 7 lengths (red) and best-fits (black). As the fits
are nearly indistinguishable from the data, we find this is a
highly reliable method to determine D.

SIMULATION AND EXPERIMENTAL ENERGY
PLOTS

In the main text, we examined the bifurcation be-
tween mono- and bistability in terms of mechanically sta-
ble equilibrium points. Here, we provide an alternative
and equivalent comparison presented in terms of the en-
ergy as a function of plane angle ¢ and extension Ax/L
(Fig. S5). Specifically, the normalized total energy in
simulation and experiments both have a single local en-
ergy minimum below the critical plane angle and two en-
ergy minima above the critical plane angle. These min-
ima correspond to the mechanically stable equilibrium
points described in the main text.

ESTIMATION OF SELF-FOLDING GEL k;, AND k.

For the self-folding gel sheets, considerations from con-
tinuum elasticity show the creases have an energy scale®

~ 7geltge1’ (84)
while the facets have a bending energy scale

Ugel facet ™~ Erigidtrigidtzeb (85)

Ugel crease
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FIG. S4. Experimental strain-controlled mechanical data

studying the transition between mono- and bistability in
square twists. Measurements of the tensile force F(¢, Ax/L)
for (a) 120 1b paper, (b) 53 1b paper, and (c) 28 lb paper
show the transition between mono- and bistability is generic,
though the force barrier for ¢ > ¢. dramatically decreases as
the paper becomes thinner.

Taking the PNIPAM gel plane-strain modulus Ege ~ 10°
Pa, the gel’s thickness tge) ~ 1075 m, the plane-strain
modulus of the rigid PpMS layer Eigia ~ 10° Pa, and
the PpMS layer thickness t,igia ~ 10~7 m, we find

Ue ace k
gl focet 20107, (S6)

Ugel crease kc

as was used in the main text.

GLOBAL ENERGY MINIMA FOR
STRESS-CONTROLLED LOADING

The custom simulation developed in MATLAB and de-
scribed in the main text was designed to follow the kine-
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FIG. S5. Dimensionless square twist energy with local min-
ima corresponding to mechanical equilibrium. (a) The sum
of crease and bending energy from Fig. 3(d) of the main text
shows how the competition between these different deforma-
tions gives rise to mono- and bistable regimes. (b) Integrating
the experimentally measured force data produces a family of
energy curves shown here with an offset, which agrees favor-
able with simulations.

matics of the square twist along a strain-controlled path
in phase space. To determine the stress-controlled equiv-
alent and obtain an independent check of our results,
we utilized Tessellatica, a freely available Mathematica
package. To implement the folding of the square twist
in Tessellatica, we define the crease pattern by defining
coordinates for 2D vertices, and assign edges to pairs of
vertices with an associated mountain, valley, universal,
or boundary attribute (Fig. 6(a)).

Valid folding configurations must obey the Kawasaki
consistency conditions, which we briefly describe here.
We start by drawing a closed curve around any given
vertex and define the matrix A; that rotates by the sec-
tor angle a; so that the i crease lies along one of the
principal axes. Define the matrix C; that rotates about
the crease by an angle ™ — ;. The entire folded form can
then be generated by applying the matrix x; = 4,C; A, !
to the ¢*" sector; this matrix rotates the whole sector to
the crease, rotates the sector by the fold angle, and then
rotates back. The Kawasaki consistency condition states
that on a degree N vertex, the rigidity matrix R must
satisfy the following”®:

R=xi1x2---xnv-1xny =1, (S7)

where Z is the identity matrix. This gives a system of
equations for the the fold angles of a vertex satisfying
consistency.

To model the self-folding gel experiments, we start
with a flat square twist where every crease angle is 0°
at equilibrium, and define the 2D graph accordingly in
Tessellatica (Fig. 6(a)). We then set a reference angle for
each assigned crease, i.e. O for valley creases and —0,
for mountain creases. Facet bending is implemented by
setting the target fold angles to zero for these “creases”
in the 2D graph. The energy functional as given in the
main manuscript is minimized subject to the Kawasaki
vertex consistency constraint. The equilibrium opening
distance /L is determined for the case where k;,/k. = 50
as a function of plane angle ¢ and target reference crease
angle © (Fig. 6(b)). This data shows the existence of
a critical point ¢. ~ (27.5 £ 2.5)°, below which z/L
smoothly varies with ©, and above which, has a discon-
tinuity. Because Tessellatica analytically solves for glob-
ally minimized energy structures, we do not recapitulate
the hysteresis curves seen in the experimental measure-
ments of self-folding square twists. The existence of the
discontinuity in the global energy minimum, however, is
precisely the signature that would be expected in light of
this software feature.

THE TRIANGLE TWIST

While the work presented here focuses on the square
twist, it is not the only crease pattern that exhibits
a geometrically-driven bifurcation between mono- and
bistability. For example, the modified triangle twist®
(Fig. S7) exhibits similar features. In this origami pat-
tern, the plane angle 6 (Fig. S7(a)) has a critical point
at =~ 67°. This can be seen by varying 6 and plotting the
folding angle a, which is 0° when unfolded and 180° when
entirely folded. For 6 > 0., a continuum of values for a
is possible, whereas # < 6. has disconnected solutions
(Fig. S7(b)).

It’s interesting to note that this triangle twist is rigidly
foldable while the square twist is not. Thus, the con-
tinuum of solutions for folding angle a does not re-
quire bending, whereas solutions in the geometrically
forbidden region with do. This highlights an impor-
tant point: The bifurcation in both square and triangle
twists is a geometrically-driven phenomenon independent
of whether bending occurs or not during the folding pro-
cess. The path through this configuration space, how-
ever, depends sensitively on bending and crease DOF as
well as the separation of energy scales ky/k..

SUPPLEMENTAL VIDEO CAPTIONS

SI Video 1: Demonstration of weak snapping between
folded and unfolded states of a square twist with ¢ =~ ¢..
SI Video 2: Demonstration of pronounced snapping
instability between folded and unfolded states of a square
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FIG. S6. Input and results from Tessellatica calculations of
the stress-controlled square twist. (a) The 2D graph defined
in Tessellatica that contains all the information about crease
placement and facet bending. (b) Solving for the equilibrium
structure as a function of plane angle ¢, we determine the
square twist opening as the equilibrium value of the folding
angle © is varied from 0° to 180°. This simulates stress-
controlled conditions and identifies the presence of a discon-
tinuity at a critical plane angle.

twist with ¢ > ¢..
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TESSELLATICA CODE

Download and run Tessellatica from:
http://www.langorigami.com/science/computational/tessellatica/tessellatica.php

to predefine all the appropriate functions/objects/attributes. Using Mathematica 9, the following code calculates
energies of the facets, creases, as well as the value of the order parameter x/L.

TSquareTwistEnergy[¢_,I'_,L_]:=

Module[{v1, v2, v1rot, v2rot, verts, edges, faces, types, tobj, tobjf,
faspecs, foldangles, o, getverts3d},

vl =L{1,1};

virot = L{-1,1};

v2 = L{Sin[¢] -+ Cos[g], Cos[¢] — Sin[@]};

v2rot = L{Sin[¢] — Cos[¢], Cos[¢] + Sin[¢]};

verts = {{0,0},v1, vl + vlrot, vlrot,v2,v2 + v1,v2 + v1 + v2rot,

vl + v2rot, vl + v2rot + vlrot, vl 4+ v2rot + vlrot — v2,vl + vlrot — v2,
vlrot — v2, vlrot — v2 — v2rot, vlrot — v2rot, —v2rot, v2 — v2rot};
edges = {{1,3},{1,16},{2,5},{2, 7}, {3, 8}, {3,10}, {4,11}, {4,13},
{1,14},{1,2},{1,5},{1,15}, {1,4},{2,3}, {2, 8}, {2,6}, {3, 4},
{3.11},{3,9}, {4, 14}, {4,12}, {5,6}, {6. 7}, {7.8}. {8,9},

{9,10}, {10,11}, {11,12}, {12,183}, {13, 14}, {14,15}, {15, 16}, {16,5}};
(*definedwithfacefoldsfirst, theninternalcreases, thenboundaries*)

faces = {};

types = {U,U,U,U,U,U,U,U,U,M,V,M, M, M,V,M,M,V,M,V, M, B,
B,B,B, B, B, B, B, B, B, B, B}; (*MMMM central face*)

tobj = MakeTGraph[verts, edges, faces|//AddTAssigned[types|//AddTPlaneGraph;
Do[

a=1ix.45*x7m/18.1;

faspecs = {{V/2T',0} , {v2T',0}, {2T'Sin[¢/2], 0}, {/2T", 0},
{2T'Sin[g/2],0}, { V2T, 0} , {2T'Sinfg/2], 0}, {VT 0}

{2I'Sin[¢/2],0}, {1, —a},{1,a}, {1, —a}, {1, —a}, {1, -0},

{1’ a}’ {1’ _a}’ {1’ _a}a {]-a O:}, {1’ _a}a {]-a Oﬁ}, {la _a}a {00, 0}’

{OO, 0}’ {OO, O}a {OO, O}a {OO, 0}’ {oo’ O}’ {00, O}a {OO, O}a {OO, O}’

{oc, 0}, {00,0}, {c0, 0}};

foldangles = MakeGraphFold Angles[tobj, faspecs];

tobjff = FoldGraph3D|[tobj, foldangles, StationaryFace — 1];
getverts3d = GetValues[tobjff, { Vertices3D}];

FaceEnergy([i]] = Sum [faspecs][4, 1]] * foldangles[[;]]2, {4, 1,9}] ;
CreaseEnergy([i]] = Sum [(foldangles[[j]] — faspecs|[[4,2]])?, {j, 10,21}] ;
ShapeList([i]] = FoldedFormGraphics3D|[tobjff] /.OrigamiStylef];
Folds|[i]] = foldangles;

Deltas[[i]] =

V/((getverts3d[[1, 14]] — getverts3d[[1, 8]]).

(getverts3d[[1, 14]] — getverts3d[[1, 8]]));,

{i,1,40}]
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